Zero-order optimization with Markovian Noise

17 May 2024, 15:00
12m
Физтех.Цифра, Поточная аудитория (МФТИ)

Физтех.Цифра, Поточная аудитория

МФТИ

141701, Россия, г. Долгопрудный, Институтский переулок, д. 9
Computer & Data Science 17 Computer & Data Science

Speaker

Simon Chebykin (MIPT)

Description

In this work we study upper bounds for optimal convergence rates in stochastic optimization with smooth strongly convex objective function and zero-order unbiased oracle with bounded markovian noise. We adapt randomized accelerated GD to zero-order one-point oracle and provide argument and function convergence rates matching best known non-markovian ones.

Primary authors

Aleksandr Beznosikov (Moscow Institute of Physics and Technology) Simon Chebykin (MIPT)

Presentation materials