Grading Structure for Derivations of Group Algebras

Andronick A. Arutyunov Igor S. Zhiltsov

25 октября 2023 г.

Derivations

Definition

A derivation over a group algebra $\mathbb{C}[G]$ is a linear operator d that satisfies the Leibniz rule

$$d(ab) = d(a)b + ad(b) \tag{1}$$

Derivations form an algebra $Der(\mathbb{C}[G])$

Main examples

- Inner derivations: $d_a(x) = [x, a]$ for $a \in G$; they form an ideal $InnDer(\mathbb{C}[G])$.
- Central derivations: $d_{\tau,z}(x) = \tau(x)xz$ for $x \in G, z \in Z(G), \tau : G \to (\mathbb{C}, +)$ a homomorphism; they form a subalgebra $ZDer(\mathbb{C}[G])$.

Main Result

The focus of the talk is describing a **nontrivial** grading for $Der(\mathbb{C}[G])$. More formally:

Theorem

If |G/G'| > 1, $Der(\mathbb{C}[G])$ is **nontrivially** graded with G/G', that is there exist^a such Der_k , $k \in G/G'$, that

$$Der(\mathbb{C}[G]) = \bigoplus_{k \in G/G'} Der_k$$
 (2)

$$[Der_k, Der_l] \subset Der_{kl}$$

^aarXiv:2308.00512

Note

Generally, nontriviality would mean the existence of non-neutral element k such that $Der_k \neq 0$. However, we will show that $Der_k \neq 0$ for all k.

Definition of *Der_k* needs further definitions.

Groupoid $\Gamma(G)$

Definition

For a given group G consider a **small groupoid** $\Gamma(G)$:

- **objects** (Obj) elements of G,
- **arrows** (Hom) pairs of elements of G. For an arrow (u, v) its source $S(u, v) := v^{-1}u$, and its target $T(u, v) := uv^{-1}$. Hom(a, b) denotes a set of all arrows for which the source is a and target is b.
- **②** Consider two arrows $(u_2, v_2) \in Hom(b, c), (u_1, v_1) \in Hom(a, b)$. The **composition** for these two arrows is given by:

$$(u_2, v_2) \circ (u_1, v_1) := (v_2 u_1, v_2 v_1) \in Hom(a, c)$$
 (3)

Composition

Decomposition

For $g \in G$ denote [x] as a corresponding conjugacy class

$$[x] := \{gxg^{-1}|g \in G\}.$$
 (4)

 G^G denotes the set of conjugacy classes.

It is easy to see that Hom(a, b) is non-empty iff [a] = [b]. This yields the following definition and decomposition:

Definition

Let $\Gamma(G)_{[a]}$ denote $\Gamma(G)$'s restriction to objects from $[a] \subset G$.

Proposition

$$\Gamma(G) = \bigsqcup_{[a] \in G^G} \Gamma_{[a]}$$

Macrodecomposition

Recall an elementary group-theoretical exercise:

Statement

$$[a] \subset aG'$$
 for every $a \in G$

This observation justifies the following symbol (which we will need later)

Definition

$$\Gamma_k := \bigcup_{a \in k} \Gamma_{[a]}$$
, for $k \in G/G'$.

Note that $k \in G/G'$ is a coset.

Now we have a macrodecomposition

$$\Gamma(G) = \bigsqcup_{k \in G/G'} \Gamma_k \tag{5}$$

Characters

The following definition is crucial for the construction of the grading.

Definition

A map $\chi: \mathbf{Hom} \ (\Gamma(G)) \to \mathbb{C}$ is a (**locally-finite**) character iff for all composable pairs $(u_1, v_1), (u_2, v_2)$ holds

$$\chi((u_1,v_1)\circ(u_2,v_2))=\chi(u_1,v_1)+\chi(u_2,v_2).$$
 (6)

and for all x holds:

$$\chi(x,y) \neq 0$$
 for just finitely many y (7)

Definition

The support of a character χ ($supp\chi$) is a set of characters on which χ does **not** vanish:

$$supp \chi := \{(u, v) \in Hom(\Gamma) | \chi(u, v) \neq 0\}$$
 (8)

Derivations and Characters

The following theorem links characters and derivations and, thus, motivates former.

Theorem

A linear map $d = d(x) = \sum_{h \in G} d_h^x h$ is a derivation if f^a there exists a character χ such that

$$\chi(x,h) = d_h^x \tag{9}$$

 $^{\rm a}$ A. A. Arutyunov, A. S. Mishchenko, A. I. Shtern, Derivations of group algebras, Fundam. Prikl. Mat., 21:6 (2016), 65-78

Informally, this means that characters are "matrices" of derivations.

Characters to derivations

Examples

• For an inner derivation $d_a = [x, a]$ ($a \in G$) the character is

$$\chi_{a}(u,v) = \begin{cases} 1, & a = S(u,v), \\ -1, & a = T(u,v), \\ 0, & \text{otherwise.} \end{cases}$$
 (10)

• For a central derivation $d_{\tau,z}$ the character is:

$$\chi_{\tau,z}(u,v) = \begin{cases} \tau(uv^{-1}), & v = z, \\ 0, & \text{otherwise.} \end{cases}$$
 (11)

It follows that central derivations are non inner because they are not trivial on loops in contrast to inner.

What are *Der_k*?

Definition

$$Der_k = \{d \in Der(\mathbb{C}[G]) : supp \chi_d \subset \Gamma_k\}$$

Recall that $k \in G/G'$ is a coset.

The main result can be stated fully now.

Theorem

If |G/G'| > 1, $Der(\mathbb{C}[G])$ is **nontrivially** graded with G/G', that is there exist^a such Der_k , $k \in G/G'$, that

$$Der(\mathbb{C}[G]) = \bigoplus_{k \in G/G'} Der_k$$
 (12)

$$[Der_k, Der_l] \subset Der_{kl}$$

^aarXiv:2308.00512

Main Idea

Introduce a symbol to simplify formulations

Definition

Let d correspond to character χ_d , ∂ correspond to character χ_∂ . Denote by $\{\chi_d,\chi_\partial\}$ the character corresponding to $[d,\partial]$.

The following lemma is the essence of the theorem as it shows that the "main" property of gradings hold for Der_k

Lemma

Let $a,b\in G$, d correspond to character $\chi_d:supp\chi_d\subset \Gamma_k$, ∂ correspond to character $\chi_\partial:supp\chi_\partial\subset \Gamma_I$. Then

$$supp\{\chi_d,\chi_\partial\}\subset\Gamma_{kl}\tag{13}$$

It immediately follows that $[Der_k, Der_l] \subset Der_{kl}$. The lemma is purely technical.

Proving the Main Result

It remains to show that $\bigoplus_{k \in G/G'} Der_k$ is indeed direct and that the grading is **non-trivial**. The former follows from decomposition. Recall the example of inner derivations for the latter.

Inner Derivations

For an inner derivation $d_a = [x, a]$ $(a \in G)$ the character is

$$\chi_{a}(u,v) = \begin{cases} 1, & a = S(u,v), \\ -1, & a = T(u,v), \\ 0, & \text{otherwise.} \end{cases}$$
 (14)

Notice that

$$supp \chi_a \subset [a] \subset aG'$$
 (15)

Since for $k \in G/G'$ is a coset, k = aG' for some $a \in G$. Thus, Der_k contains a non-zero derivation $d_a = [x, a]$. Thus, **all** Der_k are **non-zero**.

Example: Discrete Heisenberg Group

Definition

Discrete Heisenberg Group is

$$\mathbf{H} = \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} : a, b, c \in \mathbb{Z} \right\}$$
 (16)

Consider this group for an example. An interesting event will occur with central derivations.

Statement

All central derivations admit the form $(\alpha, \beta \in \mathbb{C}; z \in \mathbb{Z})$

$$d_{\alpha,\beta,z}\left(\begin{pmatrix}1&a&c\\0&1&b\\0&0&1\end{pmatrix}\right) = (\alpha a + \beta b)\begin{pmatrix}1&a&c+z\\0&1&b\\0&0&1\end{pmatrix}$$
 (17)

Example: Discrete Heisenberg Group

Facts

It is well-known that

$$Z(\mathbf{H}) = \mathbf{H}' = \left\{ \begin{pmatrix} 1 & 0 & z \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} : z \in \mathbb{Z} \right\}$$
 (18)

Moreover,

$$\mathbf{H}/\mathbf{H}' = \mathbb{Z} \oplus \mathbb{Z} \tag{19}$$

Therefore, $Der(\mathbb{C}[\mathbf{H}])$ is graded with $\mathbb{Z} \oplus \mathbb{Z}$.

Observation

From (18) it follows that

$$ZDer = Der_{(0,0)} \tag{20}$$

Example: (Non-)Stem Groups and Outer Derivations

Definition

G is a stem group^a iff

$$Z(G) \le G' \tag{21}$$

^acompare with 2-rank nilpotent groups.

H is stem

$$Z(\mathbf{H}) = \mathbf{H}'$$

We will need this definition to speak about gradings for outer derivations, that is

Outer Derivations

 $OutDer(\mathbb{C}[G]) := Der(\mathbb{C}[G])/InDer(\mathbb{C}[G])$

Example: (Non-)Stem Groups and Outer Derivations

Observation 1

If G is a stem group, then

$$ZDer(\mathbb{C}[G]) \subset Der_0$$
 (22)

Observation 2

If G is NOT a stem group, there is an induced (non-trivial) grading of OutDer with G/G^\prime

$$OutDer = \bigoplus_{k \in G/G'} Der_k / InDer_k, \tag{23}$$

where

$$InDer_k := Der_k \cap InDer(\mathbb{C}[G])$$
 (24)

That's it, Folks!

Thank you!