Helly-type problems and families of convex sets satisfying (p, q)-property

Andrey Myatelin

Scientific advisor - Alexander Polyanskii

March 5th 2024

Overview

- Classic results
 - Helly's Theorem
 - Generalizations of Helly's theorem
- 2 Extension of colorful Helly Theorem
- Our problem and current progress

Helly's Theorem

Helly's theorem is one of the cornerstones of combinatorial convexity, providing an effective method for determining the intersection pattern of a finite family of convex sets

Theorem 1 (Helly's Theorem)

Let $\mathcal F$ be a finite family of convex sets in $\mathbb R^d$. If every d+1 or fewer sets of them have a non-empty intersection, then $\bigcap \mathcal F \neq \varnothing$, where $\bigcap \mathcal F := \bigcap_{C \in \mathcal F} C$

Generalizations of Helly's theorem

Theorem 2 (fractional Helly)

Let $\alpha \in (0,1]$ and $d \geq 2$ be fixed. If \mathcal{F} is a family of convex sets in \mathbb{R}^d , $|\mathcal{F}| = n$, with at least $\alpha \binom{n}{d+1}$ intersecting d + 1 tuples, then there exists an intersecting subfamily $\mathcal{F}' \subset \mathcal{F}$, with $|\mathcal{F}'| \geq \beta n$, where $\beta > 0$ is a constant that depends only on d and α .

Theorem 3 (colorful Helly)

Let $\mathcal{F}_1,...,\mathcal{F}_{d+1}$ be finite families of convex sets in \mathbb{R}^d . If $\bigcap_{i=1}^{d+1} C_i \neq \varnothing$ for all $C_1 \in \mathcal{F}_1,...,C_{d+1} \in \mathcal{F}_{d+1}$ then there exists $i \in [d+1]$ such that $\bigcap \mathcal{F}_i \neq \varnothing$

Extension of colorful Helly Theorem

The colorful Helly theorem only provides information that some family has a non-empty intersection, and we do not know anything else about this intersection. Next result provides some additional information on it

Theorem 4 (W.Rao)

Let $\mathcal{F}_1,...,\mathcal{F}_{d+1}$ be finite families of convex sets in \mathbb{R}^d . If $\bigcap_{i=1}^{d+1} C_i \neq \varnothing$ for

all
$$C_1\in\mathcal{F}_1,...,C_{d+1}\in\mathcal{F}_{d+1}$$
 then $\sum\limits_{i=1}^{d+1}dim\bigcap\mathcal{F}_i\geq 0$, where $dim\ arnothing=-1$

Method of Proof of Theorem 4

The proof of Theorem 5 uses reduction to polytopes and considers minimal with respect to inclusion compact convex set U such that families $\mathcal{F}_1 \cap U, ..., \mathcal{F}_{d+1} \cap U$ satisfy colorful Helly property.

It is easy to see that U is a polytope and every vertex of U is contained in the intersection of some family $\bigcap \mathcal{F}_i$. Then the statement of the theorem is proved by induction on d.

The Problem

Let $\mathcal F$ be a finite family of convex sets in $\mathbb R^d$. For $p\geq q\geq d+1$ we say that $\mathcal F$ has (p,q) property if among any p sets from $\mathcal F$ there are q having a common point

It is well known that for any family \mathcal{F} in \mathbb{R}^d satisfying the (p, q) property there is a set of fixed size $HD_d(p,q)$ that intersects all the sets in \mathcal{F} . However, the minimal value of $HD_d(p,q)$ is unknown even for $HD_2(4,3)$. It is only known that $HD_2(4,3) \geq 3$ and $HD_2(4,3) \leq 9$ (Daniel MCGinnis)

The Problem

It is interesting to see if we can apply method of proof of Theorem 4 McGinnis's paper to get a better upper bound on $HD_d(p,q)$ and, as the easiest case, $HD_2(4,3)$

Current progress

Following the method of proof of Theorem 4, consider family \mathcal{U} of all compact convex sets U such that $\mathcal{F} \cap U$ has (4,3)-property.

It is easy to check that $\mathcal U$ has minimal element $\mathcal U$ with respect to inclusion and that $\mathcal U$ is a polytope.

Then it was proved that for every vertex v of U there are two families C_1 , C_2 from \mathcal{F} such that $C_1 \cap C_2 \cap U = \{v\}$. Using this fact it can be shown that if dimU < 2 \mathcal{F} can be pierced by 3 points.

In case when dimU=2 we are working on getting an upper bound of $HD_2(4,3)$ using toplogical methods similar to McGinnis's paper

References

[1] Daniel McGinnis "A family of convex sets in the plane satisfying the (4,3)-property can be pierced by nine points"https://arxiv.org/abs/2010.13195