NEURAL NETWORK AND HYBRID MECHANISMS IN DATA PROCESSING FOR FINANCIAL ANALYTICS

Author: Ticona Perales Guillermo Sebastian

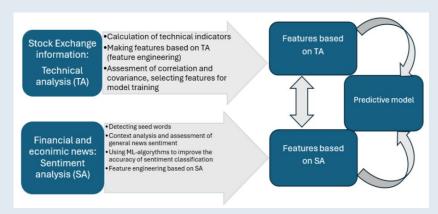
Supervisor: Kubrakova Ekaterina Aleksandrovna

PROBLEM STATEMENT

 The current hybrid model's performance in financial sentiment analysis can be improved by adding additional features extracted from social media posts.

GOAL

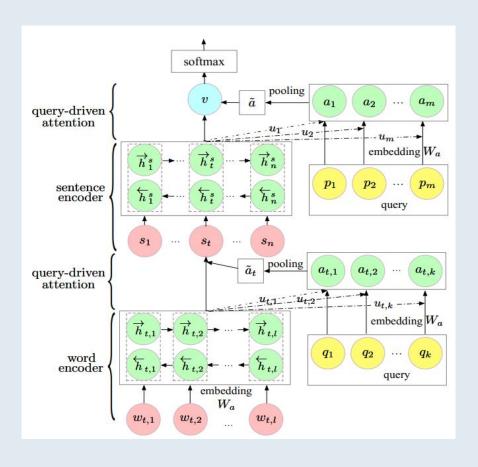
 Incorporate a new set of features extracted from the sentiment analysis of financial social media posts from Pulse using RuBert and Flnancial Sentiment analysis network with Hierarchical Query-driven Attention (FISHQA).



MODELS COMPARED

- RuBERT: A pre-trained transformer model fine-tuned for Russian sentiment classification tasks.
- FISHQA (Financial Sentiment Analysis with Hierarchical Query-Driven Attention) [2]: This model is designed for interpretable document-level sentiment analysis.

FISHQA architecture



DATASET

- DATASET: RuNews scored
- Built a dataset from Pulse publications by extracting and labeling financial sentiment
- 308 000 samples in general

```
fetch_news(ticker, cursor=''):
url = f'https://www.tinkoff.ru/api/invest-gw/social/v1/post/instrument/{ticker}?cursor={cursor}&limit=50
    response = requests.get(url, headers=HEADERS)
   response.raise for status()
       json data = response.json()
    except requests.exceptions.JSONDecodeError:
       print(f"Invalid JSON response for ticker {ticker}. Skipping...")
       return [], None
    data = json_data.get('payload', {}).get('items', [])
    next cursor = json data.get('payload', {}).get('nextCursor', None)
    news list = []
    for item in data:
       post_date = datetime.strptime(item.get('inserted'), '%Y-%m-%dT%H:%M:%S.%f%z')
        if 2020 <= post_date.year <= 2025:
            reactions = item.get('reactions', {}).get('counters', [])
            reaction sum = sum(
                reaction.get('count', 0)
                for reaction in reactions
                if reaction.get('type') in ['like', 'rocket', 'buy-up']
                'ticker': ticker.
                'post_id': item.get('id'),
                'owner id': item.get('owner', {}).get('id'),
                'date': post date.strftime('%Y-%m-%d'),
                'reactions sum': reaction sum,
                'text': item.get('content', {}).get('text', '')
            news_list.append(news)
```

SUMMARIZATION ATTEMPT

- Tried summarization of texts using when len(text) > 500 → TOO SLOW
- Use ±2 sentences around main ticker → TOO SLOW
- Didn't improve clarity

Summarizing texts: 98%| 24662/25146 [33:18:58<41:19, 5.12s/ example

- So instead considered windows of words around main ticker
- Main tickers: SBER, LKOH, MTSS, GMKN, AFLT, MOEX

MODELS COMPARED

- RUBERT-BASE-CASED-SENTIMENT
- RUBERT-TINY2-RUSSIAN-FINANCIAL-SENTIMENT
- RUBERT-BASE-CASED-SENTENCE (Regression, then chose threshold for 3 classes)
- FISHQA

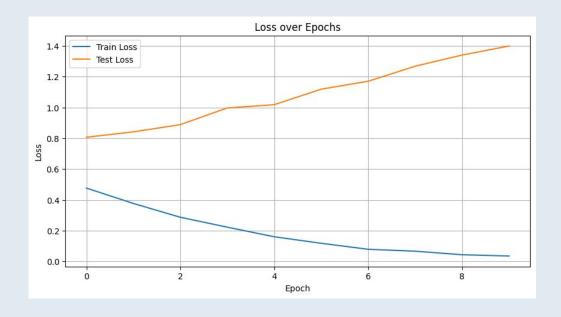
Evaluatin Predicting wi Accuracy: 0.3 Macro Recall:	- th blanchefo 581			
Macro F1: 0.3	227			
Weighted F1:	0.3293			
Classificatio	n Report:			
	precision	recall	f1-score	support
Neutral	0.41	0.56	0.48	216
Positive	0.43	0.12	0.19	203
Negative	0.25	0.39	0.30	120
accuracy			0.36	539
macro avg	0.36	0.36	0.32	539
weighted avg	0.38	0.36	0.33	539

Evaluating: Predicting with	mxlcw/rub				
Accuracy: 0.669					
Macro Recall: 0	0.6583				
Macro F1: 0.656	50				
Weighted F1: 0.	.6670				
Classification	Report:				
ī	orecision	recall	f1-score	support	
Neutral	0.73	0.60	0.66	216	
Positive	0.66	0.80	0.72	203	
Negative	0.59	0.57	0.58	120	
accuracy			0.67	539	
macro avg	0.66	0.66	0.66	539	
weighted avg	0.67	0.67	0.67	539	

FINE-TUNING RESULTS

(Only first 2 models)

- Up to 15 epoches
- Best results at 4 epoches



	epoch	train_loss	test_loss	accuracy	recall	f1_macro
0	1	0.476560	0.806628	0.667904	0.674182	0.660590
1	2	0.376724	0.841646	0.667904	0.660156	0.661159
2	3	0.287102	0.888720	0.677180	0.675429	0.669500
3	4	0.222675	0.996921	0.660482	0.672107	0.657432
4	5	0.160368	1.018126	0.682746	0.675515	0.675685
5	6	0.117972	1.118986	0.654917	0.658835	0.650947
6	7	0.079078	1.170401	0.671614	0.667194	0.664113
7	8	0.066689	1.267992	0.664193	0.668231	0.658924
8	9	0.043685	1.340437	0.671614	0.677811	0.666223
9	10	0.035230	1.399117	0.647495	0.647823	0.642960

FINE-TUNING RESULTS

- Up to 5 epoches
- RUBERT-BASE-CASED-SENTENCE

F1 Score (macro): 0.9231

Precision (macro): 0.9211

Accuracy: 0.9246

FISHQA

[Epoch 5] Loss: 0.1843

- Accuracy: 0.8236 - F1 Score: 0.8152

CONCLUSION

- The validation shows that fine-tuned Rubert-base-cased-Sentence performs better
- FISHQA performance may improve by a better set of queries
- Since the metrics of Rubert are better, we infer that the performance of the hybrid model will improve as well

REFERENCES

- [1] Qiu, J., Wu, Q., Ding, G., Xu, Y., Feng, S., & Shi, Y. (2016). A survey of machine learning for big data processing. Journal of Big Data, 3(1), 1–17. https://doi.org/10.1186/s40537-017-0111-6
- [2] Yang, B., Cardie, C., & Teng, F. (2018). Beyond polarity: Interpretable financial sentiment analysis with hierarchical query-driven attention. *Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI-18)*, 5, 4461–4467. https://www.ijcai.org/proceedings/2018/590
- [3] Jin, D., Zhang, Y., Zhu, H., He, X., Li, Y., & Wu, J. (2024). Financial sentiment analysis: A survey. ACM Computing Surveys, 56(3), 1–38. https://doi.org/10.1145/3649451
- [4] Kubrakova E.A. (2024). Hybrid approach to sentiment analysis and its parametrization in machine learning models. XI International Conference "Modern Econometric Tools and Applications" (META-2024), HSE, Nizhniy Novgorod.