Sign Operator for (L_0, L_1) -Smooth Optimization with Heavy-Tailed Noise

Ikonnikov Mark

Moscow Institute of physics and Technology

Course: My first scientific paper (Strijov's practice)/Group 206
Expert: Alexander Beznosikov
Consultant: Nikita Kornilov

April 17, 2025

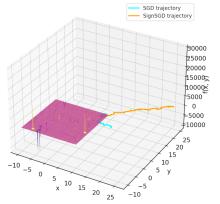
Goal of Research

Objectives

- ▶ Define (L_0, L_1) -smoothness.
- Develop sign-based methods (Sign-SGD, minibatch-SignSGD, momentum-SignSGD) for heavy-tailed (HT) noise.
- Establish theoretical convergence bounds under (L₀, L₁)-smoothness and HT noise.
- ▶ Validate results through computational experiments.

Idea





Convergence rates improve significantly with Sign-methods.

$$\|\nabla^2 f(x)\|_2 \le L_0 + L_1 \|\nabla f(x)\|$$

$$\mathbb{E}_{\xi}[|\nabla f(x,\xi)_{i} - \nabla f(x)_{i}|^{\kappa}] \leq \sigma_{i}^{\kappa}, \ \kappa \in (1,2]$$

Subjects: Sign-based methods, (L_0, L_1) -smoothness, high-probability convergence, heavy-tailed noise.

Literature

Title Sign Operator for Coping with Heavy-Tailed Noise	Year 2025	Authors Kornilov et al.	Paper arXiv
signSGD: Compressed Optimisation for Non-	2018	J. Bernstein et al.	PMLR
Convex Problems Methods for Convex (L0,L1)-Smooth Optimization	2024	Gorbunov et al.	arXiv
Robustness to Un- bounded Smoothness of Generalized SignSGD	2022	M. Crawshaw et al.	NeurIPS

Hypothesis and Model

Hypothesis

Sign-based optimization methods outperform traditional gradient-based methods in (L_0, L_1) -smooth problems with heavy-tailed noise, achieving faster convergence and robustness.

Model

 $f: \mathbb{R}^d \to \mathbb{R}$:

$$\min_{x \in \mathbb{R}^d} f(x) := \mathbb{E}_{\xi \sim \mathcal{S}}[f(x, \xi)],$$

Consider a function $f: \mathbb{R}^d \to \mathbb{R}$ that is (L_0, L_1) -smooth:

$$\|\nabla f(x) - \nabla f(y)\| \le (L_0 + L_1 \|\nabla f(u)\|) \|x - y\|,$$

with gradient estimates $\nabla f(x,\xi)$ under HT noise:

- $\blacktriangleright \mathbb{E}_{\xi}[\nabla f(x,\xi)] = \nabla f(x),$
- $\mathbb{E}_{\xi}[|\nabla f(x,\xi)_i \nabla f(x)_i|^{\kappa}] \leq \sigma_i^{\kappa}, \ \kappa \in (1,2].$

Examples of (L_0, L_1) -Smooth Functions

The following functions illustrate (L_0, L_1) -smoothness:

- Let $f(x) = ||x||^{2n}$, where n is a positive integer. Then, f(x) is convex and (2n, 2n 1)-smooth. Moreover, f(x) is not L-smooth for $n \ge 2$ and any $L \ge 0$.
- ▶ $f(x) = \log (1 + \exp(-a^{\top}x))$, where $a \in d$ is some vector. It is known that this function is L-smooth and convex with $L = \|a\|^2$. However, one can show that f is also (L_0, L_1) -smooth with $L_0 = 0$ and $L_1 = \|a\|$. For $\|a\| \gg 1$, both L_0 and L_1 are much smaller than L.

These are relevant to compressed sensing and machine learning.

Sign-SGD Algorithm

Algorithm 1 SignSGD

Input: Starting point $x^1 \in \mathbb{R}^d$, number of iterations T, stepsizes $\{\gamma_k\}_{k=1}^T$.

- 1: **for** k = 1, ..., T **do**
- 2: Sample ξ^k and compute estimate $g^k = \nabla f(x^k, \xi^k)$;
- 3: Set $x^{k+1} = x^k \gamma_k \cdot \operatorname{sign}(g^k)$;
- 4: end for

Output: uniformly random point from $\{x^1, \dots, x^T\}$.

Sign-SGD-batching

Algorithm 2 minibatch-SignSGD

Input: Starting point $x^1 \in \mathbb{R}^d$, number of iterations T, stepsizes $\{\gamma_k\}_{k=1}^T$, batchsizes $\{B_k\}_{k=1}^T$.

- 1: **for** k = 1, ..., T **do**
- 2: Sample $\{\xi_i^k\}_{i=1}^{B_k}$ and compute gradient estimate $g^k = \sum_{i=1}^{B_k} \nabla f(x^k, \xi_i^k)/B_k$;
- 3: Set $x^{k+1} = x^k \gamma_k \cdot \operatorname{sign}(g^k);$
- 4: end for

Output: uniformly random point from $\{x^1, \dots, x^T\}$.

Sign-SGD Momentum Algorithm

Algorithm 4 M-SignSGD

Input: Starting point $x^1 \in \mathbb{R}^d$, number of iterations K, stepsizes $\{\gamma_k\}_{k=1}^T$, momentums $\{\beta_k\}_{k=1}^T$.

- 1: **for** k = 1, ..., T **do**
- 2: Sample ξ^k and compute estimate $g^k = \nabla f(x^k, \xi^k)$;
- 3: Compute $m^k = \beta_k m^{k-1} + (1 \beta_k) g^k$;
- 4: Set $x^{k+1} = x^k \gamma_k \cdot \text{sign}(m^k)$;
- 5: end for

Output: uniformly random point from $\{x^1, \dots, x^T\}$.

Lemma

Lemma

(Symmetric (L_0, L_1) -smoothness) Function $f : {}^d \to is$ asymmetrically (L_0, L_1) -smooth, i.e., for all $x, y \in {}^d$, it holds

$$\|\nabla f(x) - \nabla f(y)\|_{2} \le (L_{0} + L_{1} \|\nabla f(y)\|_{2}) \exp(L_{1} \|x - y\|_{2}) \|x - y\|_{2}.$$
(1)

Moreover, it implies

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L_0 + L_1 ||\nabla f(x)||_2}{2} \cdot \exp(L_1 ||x - y||_2) ||x - y||_2^2.$$
 (2)

Lemma

Lemma (HT Batching Lemma)

Let $\kappa \in (1,2]$, and $X_1,\ldots,X_B \in {}^d$ be a martingale difference sequence (MDS), i.e., $[X_i|X_{i-1},\ldots,X_1]=0$ for all $i\in\overline{1,B}$. If all variables X_i have bounded $\kappa-$ th moment, i.e., $[\|X_i\|_2^\kappa]<+\infty$, then the following bound holds true

$$\left[\left\| \frac{1}{B} \sum_{i=1}^{B} X_i \right\|_2^{\kappa} \right] \le \frac{2}{B^{\kappa}} \sum_{i=1}^{B} [\|X_i\|_2^{\kappa}]. \tag{3}$$

Novel Lemma

Lemma (Sign Update Step Lemma (Ikonnikov))

Let $x, m \in {}^d$ be arbitrary vectors, $A = diag(a_1, \ldots, a_d)$ be diagonal matrix and f be L-smooth function (As. ??). Then for the update step

$$x' = x - \gamma \cdot A \cdot (m)$$

with $\epsilon := m - \nabla f(x)$, the following inequality holds true

$$f(x') - f(x) \le -\gamma ||A\nabla f(x)||_1 + 2\gamma ||A||_F ||\epsilon||_2 + \frac{L_0 + L_1 ||A\nabla f(x^k)||_2}{2}$$

$$\cdot \exp\left(\gamma L_1 \|A\|_F\right) \gamma^2 \|A\|_F^2.$$

Solution: Theoretical Part

Theorem (Complexity for minibatch-L0L1-SignSGD)

Consider lower-bounded (L0, L1)-smooth function f and HT gradient estimates. Then Alg. minibatch-SignSGD requires the sample complexity N to achieve $\frac{1}{T}\sum_{k=1}^{T}\|\nabla f(x^k)\|_1 \leq \varepsilon$ with probability at least $1-\delta$ for:

Optimal tuning. In case $\varepsilon \geq \frac{8L_0}{L_1\sqrt{d}}$, we use stepsize

$$\gamma = \frac{1}{48L_1d\log\frac{1}{\delta}\sqrt{d}} \Rightarrow 80L_0d\gamma\log(1\delta) \le \varepsilon/2$$
 and batchsize

$$B_k \equiv \max\left\{1, \left(\frac{16\|\vec{\sigma}\|_1}{\varepsilon}\right)^{\frac{\kappa}{\kappa-1}}\right\}$$
. $T = O\left(\frac{\Delta_1 L_1 \log \frac{1}{\delta} d^{\frac{3}{2}}}{\varepsilon}\right)$. The total number of oracle calls is:

$$\begin{array}{lcl} \varepsilon & \geq & \frac{8L_0}{L_1\sqrt{d}} & \Rightarrow & \textit{N} = \textit{O}\left(\frac{\Delta_1L_1\log(1\delta)d^{\frac{3}{2}}}{\varepsilon}\left[1+\left(\frac{\|\vec{\sigma}\|_1}{\varepsilon}\right)^{\frac{\kappa}{\kappa-1}}\right]\right), \\ \\ \varepsilon & < & \frac{8L_0}{L_1\sqrt{d}} & \Rightarrow & \textit{N} = \textit{O}\left(\frac{\Delta_1L_0\log(1\delta)d}{\varepsilon^2}\left[1+\left(\frac{\|\vec{\sigma}\|_1}{\varepsilon}\right)^{\frac{\kappa}{\kappa-1}}\right]\right). \end{array}$$

Solution: Theoretical Part

Theorem (Complexity for M-L0L1-SignSGD)

Consider lower-bounded (L_0, L_1) -smooth function f, and HT gradient estimates. Then SignSGD-M requires T iterations to achieve $\frac{1}{T} \sum_{k=1}^{T} \left[\|\nabla f(x^k)\|_1 \right] \leq \varepsilon$ for:

achieve
$$\frac{1}{T} \sum_{k=1}^{r} \lfloor \|\nabla f(\mathbf{x}^k)\|_1 \rfloor \leq \varepsilon$$
 for:

Case $\varepsilon \geq \frac{3L_0}{cL_1}$: $\beta_k \equiv 1 - \min \left\{ 1, \left(\frac{c\Delta_1 L_1 \sqrt{d}}{T \|\vec{\sigma}\|_{\kappa}} \right)^{\frac{\kappa}{2\kappa - 1}} \right\}, \gamma_k \equiv \frac{1 - \beta}{8c} \frac{1}{L_1 d}$

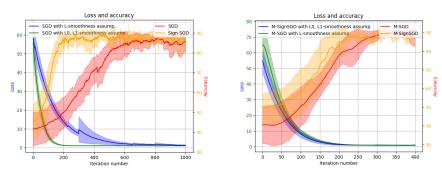
$$\geq \frac{1}{cL_1}: \beta_k \equiv 1 - \min\left\{1, \left(\frac{1}{T\|\vec{\sigma}\|_{\kappa}}\right)\right\}, \gamma_k \equiv \frac{1}{8c} \frac{1}{L}$$

$$T = O\left(rac{\Delta_1 L_1 d}{arepsilon}\left(1 + \left(rac{\sqrt{d} \| ec{\sigma} \|_{\kappa}}{arepsilon}
ight)^{rac{\kappa}{\kappa-1}}
ight)
ight),$$

$$\begin{array}{l} \text{Case } \varepsilon < \frac{3L_0}{L_1} \text{:} \\ 1 - \beta_k \equiv 1 - \min \left\{ 1, \left(\frac{\Delta_1 L_0}{T \|\vec{\sigma}\|_\kappa^2} \right)^{\frac{\kappa}{3\kappa - 2}} \right\}, \gamma_k \equiv \sqrt{\frac{\Delta_1 (1 - \beta_k)}{T L_0 d}} \end{array}$$

$$T = O\left(\frac{\Delta_1 L_1 d}{\varepsilon^2}\right) + \left(\frac{\Delta_1 L_1 d}{\varepsilon}\right) + \left(\frac{\sqrt{d} \|\vec{\sigma}\|_{\kappa}}{\varepsilon}\right)^{\frac{\kappa}{\kappa - 1}}\right),$$

Computational Experiment: Goals and Statistics



Convergence and accuracy rates improve significantly with Sign-methods.

Error Analysis

Error comparison

Method	Mean Loss	Mean Acc.	Loss Var.	Acc. Var.
M-SignSGD	3.63	82.86	73.56	135.77
M-SGD	7.72	73.46	209.46	341.58
SignSGD	6.71	79.12	155.10	140.47
SGD	16.44	62.96	234.20	70.55

Table: comparison of convergence of several methods under the assumptions

Results and Conclusions

Results

- ▶ Sign-based methods outperform SGD in convergence under (L_0, L_1) -smoothness and HT noise.
- Novel lemma is proven.
- Momentum-SignSGD and minibatch-SignSGD convergence are bounded and proved.

Conclusions

- (L_0, L_1) -smoothness enables better rates under (L_0, L_1) and HT-noise assumptions.
- Sign-based methods are noise-robust and communication-efficient.