Invariant measures on $\mathbb R$ and Fourier transform

E. Dzhenzher

«Hard» problem of measure's theory

Does there exist any measure μ on bounded subsets of \mathbb{R}^n such that:

- $\mu([0,1]^n)=1$
- If A and B are congruent sets then $\mu(A) = \mu(B)$
- If $E = \bigsqcup_{k=1}^{\infty} E_k$ then $\mu(E) = \sum_{k=1}^{\infty} \mu(E_k)$?

Theorem

Such measure does not exist even in \mathbb{R}^1 .

«Easy» problem of measure's theory

Does there exist any measure μ on bounded subsets of \mathbb{R}^n such that:

- $\mu([0,1]^n)=1$
- If A and B are congruent sets, then $\mu(A) = \mu(B)$
- If $E = \bigsqcup_{k=1}^m E_k$ then $\mu(E) = \sum_{k=1}^m \mu(E_k)$?

Theorem (Banach)

The «Easy» problem of measure's theory has a solution for \mathbb{R}^1 and \mathbb{R}^2 , but it is not unique.

Theorem (Hausdorff)

The «Easy» problem of measure's theory is unsolvable for \mathbb{R}^n , $n \ge 3$.

Bibliography

- ullet V. A. Glazatov, «Measure of the Banach Limit on $L_\infty(\mathbb{R})$ »
- I. P. Natanson, «Theory of function of real variable», in Russian
- Yu. N. Orlov, V. Zh. Sakbaev, O. G. Smolyanov, «Unbounded random operators and Feynman formulae»
- V. Zh. Sakbaev, «Averaging of random walks and shift-invariant measures on a Hilbert space»
- E. M. Semenov, F. A. Sukochev, A. S. Usachev, «Geometry of Banach limits and their applications»

Ultrafilter

Definition

A family ${\mathcal F}$ of subsets of a set is called a filter if

- \bullet $\varnothing \notin \mathcal{F}$
- if $B \subset A$ and $B \in \mathcal{F}$ then $A \in F$
- if $A, B \in \mathcal{F}$ then $A \cap B \in \mathcal{F}$.

An inclusion-wise maximum filter is called the *ultrafilter*.

If $\bigcap_{F \in \mathcal{F}} F = \emptyset$ then the ultrafilter is said to be *non-principal*.

Limit along ultrafilter

Definition

Let \mathcal{F} be a non-principal ultrafilter on \mathbb{R} .

Let $f \in L_{\infty}(\mathbb{R}, \mathbb{R})$. We say that $y \in \mathbb{R}$ is a \mathcal{F} -limit of f, denoted as $y = \lim_{\mathcal{F}} f$, if for every $\varepsilon > 0$ it holds that $\{x : |f(x) - y| \le \varepsilon\} \in \mathcal{F}$.

Lemma

The limit $\lim_{\mathcal{F}} f$ always exists.

Proposition

If $\lim_{x\to\infty} f(x) = a$ then $\lim_{\mathcal{F}} f = a$.

Construction Banach's measure on R

Definition

Let \mathcal{F} be a non-principal ultrafilter on \mathbb{R} . Let $f \in L_{\infty}(\mathbb{R})$. The functional $\varphi \colon L_{\infty}(\mathbb{R}) \to \mathbb{R}$ is defined by

$$\varphi(f) := \lim_{\mathcal{F}} \frac{1}{2x} \int_{-x}^{x} f(t) dt.$$

For $A \in \mathcal{B}(\mathbb{R})$ define $\mu_B(A) := \varphi(I_A)$.

The measure μ_B is shift-invariant, finitely-additive, and finite. The measure μ_B depends on ultrafilter.

Integral

Definition

For a simple function $f(x) = \sum_{i=1}^n c_i I_{A_i}(x)$ define $\int_{\mathbb{R}} f(x) d\mu_B(x) := \sum_{i=1}^n c_i \mu_B(A_i)$. For $f \in L_{\infty}(\mathbb{R})$ there are simple functions f_n such that $f_n \to f$ almost everywhere. Define

$$\int_{\mathbb{R}} f(x) d\mu_B(x) := \lim_{n \to \infty} \int_{\mathbb{R}} f_n(x) d\mu_B(x).$$

Lemma

For $f \in L_{\infty}(\mathbb{R})$ we have

$$\int_{\mathbb{R}} f(x) d\mu_B(x) = \lim_{\mathcal{F}} \frac{1}{2x} \int_{-x}^{x} f(t) dt.$$

• $L_B^q \subset L_B^p$ for 1

Inner product and Fourier transform

Definition

Define the inner product $(f,g):=\int_{\mathbb{R}}f(x)\overline{g(x)}d\mu_B(x)$ for $f,g\in L_2(\mathbb{R},\mathcal{B}(\mathbb{R}),\mu_B,\mathbb{C})$

- $(e^{i\alpha x}, e^{i\beta x}) = I\{\alpha = \beta\}$. Then $\{e^{i\alpha x}\}$ is the continual orthonormal system
- $\bullet \ (e^{i\alpha x},e^{ix^2})=0$

Definition

Define the Fourier transform $(Ff)(y) := \int_{\mathbb{R}} f(x)e^{-ixy}d\mu_B(x)$.

- $(Fe^{i\alpha x})(y) = I\{y = \alpha\}$
- $(Fe^{i|x|^a})(y) = 0$ for a > 1
- $F(f(x + \alpha))(y) = (Ff)(y)e^{i\alpha y}$

Fourier transform

Definition

Define the counting measure $\nu \colon 2^{\mathbb{R}} \to \mathbb{N} \cup \{+\infty\}$ by $\nu(A) := |A|$ for $A \subset \mathbb{R}$.

The measure ν is shift-invariant, locally finite, σ -additive, and not σ -finite.

Consider the Fourier transform F as the functional from $L_2(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mu_B, \mathbb{C})$ to $L_2(\mathbb{R}, \nu, \mathbb{C})$.

Denote $\mathcal{H}^{tr}_{B} := \operatorname{CI}\left\langle e^{i\alpha x}, \alpha \in \mathbb{R} \right\rangle$.

Theorem

$$\operatorname{\mathsf{Ker}} F = (\mathcal{H}^{\mathit{tr}}_{\mathit{B}})^{\perp}$$

Results

The research was carried out on:

- «Hard» and «Easy» problem statement of measure theory and Banach–Tarski paradox
- Notions of Banach's limit, ultrafilter, limit along ultrafilter
- ullet Construction of Banach's measure on $\mathbb N$ and $\mathbb R$
- Relationship between Banach's and counting measures generated by Fourier transform