Neural Networks Loss Landscape Convergence in Hessian Low-Dimensional Space

Tem Nikitin

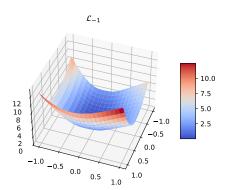
Moscow Institute of Physics and Technology

2025

Goals

- Study how neural network loss landscape changes with dataset size
- ▶ Define and measure $\Delta_k = \mathbb{E}(\mathcal{L}_{k+1}(\mathbf{w}) \mathcal{L}_k(\mathbf{w}))^2$
- Develop Hessian-based low-dimensional projection method
- ▶ Derive theoretical bound for Δ_k via top-d eigenvalues
- Propose an algorithm to determine the Δ-sufficient dataset size
- Validate threshold k* beyond which further data yield negligible change

One-slide



- Hessian projection onto top-d eigenvectors
- Monte Carlo estimate of $\Delta_k^{emp} = \mathbb{E}(\mathcal{L}_{k+1} \mathcal{L}_k)^2$
- Analytical bound: $\Delta_k^{th} \ge \Delta_k^{emp}$
- Detect dataset threshold k*

Main message: Loss landscape stabilizes after sufficient sample size.

Literature

- ▶ Wu et al. (2017): loss landscapes vs dataset size [2]
- ► Sagun et al. (2018): Hessian low effective rank [7]
- Li et al. (2018): visualizing loss surfaces [11]
- ▶ Ghorbani *et al.* (2019): eigenvalue density analysis [8]
- ▶ Bousquet & Elisseeff (2002): stability and generalization bounds [12]

Problem Statement: Hypothesis and Model

Hypothesis

Beyond some k^* , adding new samples changes the local loss landscape by less than a tolerance Δ_{tol} , i.e. $\forall \ k \geq k^* : \ \Delta_k < \Delta_{tol}$.

Model

- ▶ MLP with ReLU activations for *K*-class classification
- ▶ Empirical loss: $\mathcal{L}_k(\mathbf{w}) = \frac{1}{k} \sum_{i=1}^k \ell_i(\mathbf{w})$
- ► Hessian: $\mathbf{H}_k(\mathbf{w}) = \nabla_{\mathbf{w}}^2 \mathcal{L}_k(\mathbf{w})$

Problem Statement: Quality Criteria

- ▶ Convergence rate: $\Delta_k = O(1/k)$
- Theoretical bound via top-d eigenvalues upper-bounds empirical Δ_k
- ▶ Plateau in eigenvalue differences $\lambda_i^{k+1} \lambda_i^k$ indicates threshold

Problem Solution: Theoretical Analysis

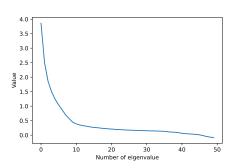
► Project parameters:

$$\mathbf{w} = \mathbf{w}^* + \mathbf{P}\boldsymbol{\theta}$$
, $\mathbf{P} = [\mathbf{e}_1, \dots, \mathbf{e}_d]$

► Taylor approx:

$$\mathcal{L}_k(\mathbf{w}^* + \mathbf{P}\boldsymbol{\theta}) \approx \mathcal{L}_k(\mathbf{w}^*) + \frac{1}{2}\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{\Lambda}_k \boldsymbol{\theta}$$

► Bound:



Eigenvalue decay

$$\Delta_k \approx \frac{\sigma^4}{4} \left(2 \sum_{i=1}^d (\lambda_{k+1}^i - \lambda_k^i)^2 + \left(\sum_{i=1}^d (\lambda_{k+1}^i - \lambda_k^i) \right)^2 \right).$$

Goals of Computational Experiment

- Datasets: MNIST, Fashion-MNIST (60k train, 10k test)
- ▶ MLP: 2 hidden layers, $\sim 10^5$ parameters
- Subspace dimension d=10, Monte Carlo samples K=64, $\sigma=1$
- ightharpoonup Compare empirical Δ_k vs theoretical bound across k

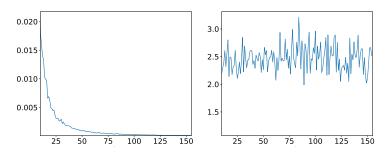
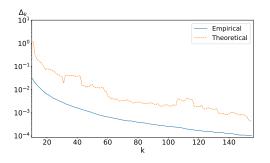


Figure 8: Monte Carlo Δ_k vs k and $\Delta_k \cdot k^2$ (p.11)

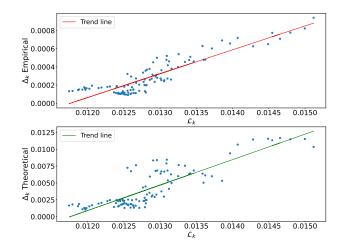
Error Analysis

- \triangleright Empirical Δ_k consistently below theoretical estimate
- Gap due to neglected eigen-modes beyond top-d
- ▶ Monte Carlo variance decreases with sample size *K*



Theoretical (dashed) vs empirical (solid) Δ_k

Main Experiment: Theoretical vs. Empirical Δ_k



Empirical and Theoretical Δ_k

Practical Measurements

Dataset	Model	Δ	k	L_k	Time (s)
MNIST	Single-layer MLP	0.025	100	0.013	2000
	Multi-layer MLP	0.025	40	0.010	3500
	Convolutional CNN	0.025	60	0.024	1800
Fashion-MNIST	Single-layer MLP	0.030	120	0.020	2100
	Multi-layer MLP	0.030	90	0.017	4400
	Convolutional CNN	0.030	70	0.015	2400

Algorithm: Δ -sufficient Dataset Size

Algorithm 1: Determine Δ -sufficient dataset size

- 1. Initialize dataset $D \leftarrow \emptyset$ and batch counter $k \leftarrow 0$.
- 2. Repeat:
 - \triangleright $k \leftarrow k + 1$.
 - Sample a new batch of data and append to D.
 - Train or update model on D.
 - ► Compute top-*d* Hessian eigenvalues $\{\lambda_k^{(i)}\}_{i=1}^d$ and $\{\lambda_{k+1}^{(i)}\}$.
 - Estimate

$$\Delta_k pprox rac{\sigma^4}{4} \Big(2 \sum_{i=1}^d (\lambda_{k+1}^{(i)} - \lambda_k^{(i)})^2 + \big(\sum_{i=1}^d (\lambda_{k+1}^{(i)} - \lambda_k^{(i)}) \big)^2 \Big).$$

- 3. Until $\Delta_k < \Delta_{\text{tol}}$.
- 4. **Return** |D|, the Δ -sufficient sample size.

Results and Conclusions

- ▶ Identified dataset thresholds k* for MNIST and Fashion-MNIST.
- Loss landscape stabilizes: additional data negligible beyond k*.
- ▶ Hessian-based bound provides a reliable upper-bound for Δ_k .
- ightharpoonup Proposed a practical algorithm for Δ -sufficient dataset sizing.
- Offers guidelines for dataset collection and early stopping.