

Fourier transform on Banach's measure

E. Dzhenzher

Bibliography

- V. A. Glazatov, «Measure of the Banach Limit on $L_\infty(\mathbb{R})$ »
- V. Zh. Sakbaev, «Averaging of random walks and shift-invariant measures on a Hilbert space»
- E. M. Semenov, F. A. Sukochev, A. S. Usachev, «Geometry of Banach limits and their applications»

Ultrafilter

Definition

A family \mathcal{F} of subsets of a set is called a filter if

- $\emptyset \notin \mathcal{F}$
- if $B \subset A$ and $B \in \mathcal{F}$ then $A \in \mathcal{F}$
- if $A, B \in \mathcal{F}$ then $A \cap B \in \mathcal{F}$.

An inclusion-wise maximum filter is called the *ultrafilter*.

If $\bigcap_{F \in \mathcal{F}} F \neq \emptyset$ then the ultrafilter is said to be *principal*.

Limit along ultrafilter

Definition

Let \mathcal{F} be a non-principal ultrafilter on \mathbb{R} .

Let $f \in L_\infty(\mathbb{R}, \mathbb{R})$. We say that $y \in \mathbb{R}$ is a \mathcal{F} -limit of f , denoted as $y = \lim_{\mathcal{F}} f$, if for every $\varepsilon > 0$ it holds that $\{x : |f(x) - y| \leq \varepsilon\} \in \mathcal{F}$.

Lemma

The limit $\lim_{\mathcal{F}} f$ always exists.

Proposition

If $\lim_{x \rightarrow \infty} f(x) = a$ then $\lim_{\mathcal{F}} f = a$.

Construction Banach's measure on \mathbb{R}

Definition

Let \mathcal{F} be a non-principal ultrafilter on \mathbb{R} . Let $f \in L_\infty(\mathbb{R})$. The functional $\varphi: L_\infty(\mathbb{R}) \rightarrow \mathbb{R}$ is defined by

$$\varphi(f) := \lim_{\mathcal{F}} \frac{1}{2x} \int_{-x}^x f(t) dt.$$

For $A \in \mathcal{B}(\mathbb{R})$ define $\mu_B(A) := \varphi(I_A)$.

The measure μ_B is shift-invariant, finitely-additive, and finite.

Integral

Definition

For a simple function $f(x) = \sum_{i=1}^n c_i I_{A_i}(x)$ define $\int_{\mathbb{R}} f(x) d\mu_B(x) := \sum_{i=1}^n c_i \mu_B(A_i)$.
For $f \in L_{\infty}(\mathbb{R})$ there are simple functions f_n such that $f_n \rightarrow f$ almost everywhere.

Define

$$\int_{\mathbb{R}} f(x) d\mu_B(x) := \lim_{n \rightarrow \infty} \int_{\mathbb{R}} f_n(x) d\mu_B(x).$$

Lemma

For $f \in L_{\infty}(\mathbb{R})$ we have

$$\int_{\mathbb{R}} f(x) d\mu_B(x) = \lim_{\mathcal{F}} \frac{1}{2x} \int_{-x}^x f(t) dt.$$

- $L_B^q \subset L_B^p$ for $1 < p < q < \infty$.

Inner product and Fourier transform

Definition

Define the inner product $(f, g) := \int_{\mathbb{R}} f(x) \overline{g(x)} d\mu_B(x)$ for $f, g \in L_2(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mu_B, \mathbb{C})$

- $(e^{i\alpha x}, e^{i\beta x}) = I\{\alpha = \beta\}$. Then $\{e^{i\alpha x}\}$ is the continual orthonormal system.
- $(e^{i\alpha x}, e^{ix^2}) = 0$.

Definition

Define the Fourier transform $(Ff)(y) := \int_{\mathbb{R}} f(x) e^{-ixy} d\mu_B(x)$.

- $(Fe^{i\alpha x})(y) = I\{y = \alpha\}$.
- $(Fe^{i|x|^a})(y) = 0$ for $a > 1$.
- $F(f(x + \alpha))(y) = (Ff)(y) e^{i\alpha y}$.

Fourier transform

Definition

Define the counting measure $\nu: 2^{\mathbb{R}} \rightarrow \mathbb{N} \cup \{+\infty\}$ by $\nu(A) := |A|$ for $A \subset \mathbb{R}$.

The measure ν is shift-invariant, locally finite, σ -additive, and not σ -finite.

Consider the Fourier transform F as the functional from $L_2(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mu_B, \mathbb{C})$ to $L_2(\mathbb{R}, \nu, \mathbb{C})$.

Denote $\mathcal{H}_B^{tr} := \text{Cl} \langle e^{i\alpha x}, \alpha \in \mathbb{R} \rangle$.

Theorem

$$\text{Ker } F = (\mathcal{H}_B^{tr})^\perp$$

Plans

- Research averaging of random walks and Fourier transforms of random shifts
- Research counting and Banach's measure on \mathbb{R}^d