

Randomness extractors

Vsevolod Nagibin, Daniil Musatov

Moscow Institute of Physics and Technology

April 22, 2025

Min entropy

Let X be a random variable. The *min entropy* of X , denoted by $H_\infty(X)$ is $\sup\{k \in \mathbb{R} \mid \forall x \mathbb{P}[X = x] \leq 2^{-k}\} = \inf\{-\log_2 \mathbb{P}[X = x]\}$

If X is a distribution over $\{0, 1\}^n$ with $H_\infty(X) \geq k$ then it is called an (n, k) -source

Statistical distance

Let X and Y be two distributions over domain Ω . The *statistical distance* between X and Y , denoted by $\Delta(X, Y)$, is equal to

$$\max_{S \subset \Omega} |\mathbb{P}[X \in S] - \mathbb{P}[Y \in S]| = \frac{1}{2} \sum_{\omega \in \Omega} |\mathbb{P}[X = \omega] - \mathbb{P}[Y = \omega]|$$

Two distributions X and Y are called ε -close if $\Delta(X, Y) \leq \varepsilon$.

Randomness extractor

A function $\text{Ext} : \{0, 1\}^n \times \{0, 1\}^d \rightarrow \{0, 1\}^m$ is a (k, ε) -extractor if for any (n, k) -source X , the distribution $\text{Ext}(X, U_d)$ is ε -close to U_m .

By probabilistic method, can be shown the existence of an almost optimal extractor.

Theorem

$\forall k \leq n \in \mathbb{N}, \varepsilon > 0 \exists (k, \varepsilon)$ -extractor with $m = k + d - 2\log_2(\frac{1}{\varepsilon}) - O(1)$ and $d = \log_2(n - k) + 2\log_2(\frac{1}{\varepsilon}) + O(1)$.

Constructions

Important extractor construction is obtained by using hash functions.

Leftover hash lemma

If $\mathcal{H} = \{h : \{0, 1\}^n \rightarrow \{0, 1\}^{k-2\log_2(\frac{1}{\varepsilon})}\}$ is a pairwise independent family of hash functions, then $\text{Ext}(x, h) = (h, h(x))$ is a (k, ε) -extractor.

In this construction we get $m = k + d - 2\log_2(\frac{1}{\varepsilon})$, but the number of bits required to choose a hash function from a pairwise independent family is at least n . So, $d \geq n$ (and such families of hash functions with $d = n$ exist).

Condenser

Condenser

A function $\text{Con} : \{0,1\}^n \times \{0,1\}^d \rightarrow \{0,1\}^m$ is a $k \rightarrow_\varepsilon k'$ condenser if for every k -source X on $\{0,1\}^n$, $\text{Con}(X, U_d)$ is ε -close to some k' -source. Con is lossless if $k' = k + d$.

Condensers can be viewed from graph perspective.

Lemma

Let $n, d, m \in \mathbb{N}$, $K = 2^k \in \mathbb{N}$ and $\varepsilon > 0$. A function $\text{Con} : \{0,1\}^n \times \{0,1\}^d \rightarrow \{0,1\}^m$ is a $k \rightarrow_\varepsilon k + d$ lossless condenser if and only if the corresponding bipartite multigraph $G = ([2^n], [2^m], E)$ of left degree $D = 2^d$ is an $(= K, (1 - \varepsilon)D)$ vertex expander.

Here bipartite multigraph $G = ([N], [M], E)$ of left degree D is an $(= K, \gamma)$ vertex expander if and only if $\forall S \subset [N] |S| = K \implies |\{u | \exists v \in S (v, u) \in E\}| \geq \gamma |S|$

Condenser construction

A useful construction of lossless condenser is based on Parvaresh-Vardy codes [PV05]

Theorem

$\forall n \in \mathbb{N}, k_{\max} \leq n, \varepsilon > 0$ and $\alpha \in (0, \frac{\log_2(nk_{\max}/\varepsilon)}{\log_2(\log_2(nk_{\max}/\varepsilon))})$ there is an explicit function

$\text{Con} : \{0, 1\}^n \times \{0, 1\}^d \rightarrow \{0, 1\}^m$ with $d = (1 + \frac{1}{\alpha}) \cdot (\log_2 n + \log_2 k_{\max} + \log_2 \frac{1}{\varepsilon}) + O(1)$
and $m \leq 2d + (1 + \alpha)k_{\max}$ such that for all $k \leq k_{\max}$, Con is a $k \rightarrow_{\varepsilon} k + d$ condenser.

Block sources

Block source

A random variable $X = (X_1, X_2, \dots, X_t)$ is a (k_1, k_2, \dots, k_t) *block source* if for every x_1, \dots, x_{i-1} , $X_i|_{X_1=x_1 \dots X_{i-1}=x_{i-1}}$ is a k_i -source.

Block sources allow us to extract bits from each block basically independently.

Lemma

Let $\text{Ext}_1 : \{0, 1\}^{n_1} \times \{0, 1\}^{d_1} \rightarrow \{0, 1\}^{m_1}$ be (k_1, ε_1) -extractor, and $\text{Ext}_2 : \{0, 1\}^{n_2} \times \{0, 1\}^{d_2} \rightarrow \{0, 1\}^{m_2}$ be (k_2, ε_2) -extractor with $m_2 \geq d_1$. Let $\text{Ext}'((x_1, x_2), y_2) = (\text{Ext}_1(x_1, y_1), z_2)$ where $(y_1, z_2) := \text{Ext}_2(x_2, y_2)$. Then for every (k_1, k_2) block source $X = (X_1, X_2)$ in $\{0, 1\}^{n_1} \times \{0, 1\}^{n_2}$ it holds that $\text{Ext}'(X, U_{d_2})$ is $(\varepsilon_1 + \varepsilon_2)$ -close to $U_{m_1} \times U_{m_2 - d_1}$.

The lemma can be extended to extracting from many blocks.

Block sources

Actually, high min-entropy sources are block sources.

Lemma

If X is a $(n, n - \Delta)$ -source and $X = (X_1, X_2)$ is a partition of X into blocks of lengths n_1 and n_2 then (X_1, X_2) is ε -close to some $(n_1 - \Delta, n_2 - \Delta - \log_2 \frac{1}{\varepsilon})$ block sources.

Another lemma, which helps extract the remaining min-entropy.

Lemma

Let $\text{Ext}_1 : \{0, 1\}^n \times \{0, 1\}^{d_1} \rightarrow \{0, 1\}^{m_1}$ be (k_1, ε_1) -extractor, and

$\text{Ext}_2 : \{0, 1\}^n \times \{0, 1\}^{d_2} \rightarrow \{0, 1\}^{m_2}$ be (k_2, ε_2) -extractor with $k_2 \leq k_1 - m_1 - s$. Then $E' : \{0, 1\}^n \times \{0, 1\}^{d_1+d_2} \rightarrow \{0, 1\}^{m_1+m_2}$ defined by $E'(x, (y_1, y_2)) = (E_1(x, y_1), E_2(x, y_2))$ is a $(k_1, \frac{1}{1-2^{-s}} \cdot \varepsilon_1 + \varepsilon_2)$ -extractor

Ideas of best construction

To construct the optimal up to constant factor construction ([GUV09]), we will firstly construct the extractors with output length $m \geq \frac{k}{2}$ in the following steps:

1. Applies the condenser to get a source X' which is ε_0 -close to a k -source of length $\frac{9}{8}k + O(\log n + \log \frac{1}{\varepsilon_0})$.
2. Divides X' into two halves (X_1, X_2) . Now the source (X_1, X_2) is $2\varepsilon_0$ -close to a $w \times k'$ block source with $k' = \frac{k}{2} - \frac{k}{8} - O(\log \frac{n}{\varepsilon_0})$.
3. Apply block source extraction with Ext_1 (which is recursively constructed, uses d random bits and extracts $\geq \frac{k'}{2} \geq \frac{k}{6}$ bits) and Ext_2 (which uses only $\frac{d}{8}$ random bits and gives d output bits).
4. The steps described above extracted only $\frac{k}{6}$ bits. Applying the last lemma with this construction, repeated 4 times, we can extract $\geq \frac{k}{2}$ bits.

Theorem

Let constant $\alpha > 0$. $\forall n \in \mathbb{N}, k \in [0, n]$ and $\varepsilon > 0$ there is an explicit (k, ε) -extractor $\text{Ext} : \{0, 1\}^n \times \{0, 1\}^d \rightarrow \{0, 1\}^m$ with $m \geq (1 - \alpha)k$ and $d = O(\log \frac{n}{\varepsilon})$

Open problems

Open problem 1

Give an explicit construction of $(k, 0.01)$ -extractor $\text{Ext} : \{0, 1\}^n \times \{0, 1\}^d \rightarrow \{0, 1\}^m$ with seed length $d = O(\log n)$ and output length $m = k + d - O(1)$.

Open problem 2

Give an explicit construction of $(k, 0.01)$ -extractor $\text{Ext} : \{0, 1\}^n \times \{0, 1\}^d \rightarrow \{0, 1\}^m$ with seed length $d = \log n + O(1)$ and output length $m = \Omega(k)$.

Based on survey by S. Vadhan ([Vad12]).

Questions

References

- Venkatesan Guruswami, Christopher Umans, and Salil Vadhan.
Unbalanced expanders and randomness extractors from parvaresh–vardy codes.
J. ACM, 56(4), July 2009.
- F. Parvaresh and A. Vardy.
Correcting errors beyond the guruswami-sudan radius in polynomial time.
In *46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05)*,
pages 285–294, 2005.
- Salil P. Vadhan.
Pseudorandomness.
Foundations and Trends® in Theoretical Computer Science, 7(1–3):1–336, 2012.