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Reminder

Min entropy

Let X be a random variable. The min entropy of X , denoted by H∞(X ) is
sup{k ∈ R|∀xP[X = x ] ≤ 2−k} = inf{− log2 P[X = x ]}
If X is a distribution over {0, 1}n with H∞(X ) ≥ k then it is called an (n, k)-source

Statistical distance

Let X and Y be two distributions over domain Ω. The statistical distance between X and
Y , denoted by ∆(X ,Y ), is equal to

max
S⊂Ω

|P[X ∈ S ]− P[Y ∈ S ]| = 1

2

∑
ω∈Ω

|P[X = ω]− P[Y = ω]|

Two distributions X and Y are called ε-close if ∆(X ,Y ) ≤ ε.
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Reminder

Randomness extractor

A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k , ε)-extractor if for any (n, k)-source
X , the distribution Ext(X ,Ud) is ε-close to Um.

By probabilistic method, can be shown the existence of an almost optimal extractor.

Theorem

∀k ≤ n ∈ N, ε > 0∃(k, ε)-extractor with m = k + d − 2log2(
1
ε )− O(1) and

d = log2(n − k) + 2log2(
1
ε ) + O(1).
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Constructions

Important extractor construction is obtained by using hash functions.

Leftover hash lemma

If H = {h : {0, 1}n → {0, 1}k−2log2(
1
ε
)} is a pairwise independent family of hash functions,

then Ext(x , h) = (h, h(x)) is a (k , ε)-extractor.

In this construction we get m = k + d − 2 log2(
1
ε ), but the number of bits required to

choose a hash function from a pairwise independent family is at least n. So, d ≥ n (and
such families of hash functions with d = n exist).
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Condenser

Condenser

A function Con : {0, 1}n ×{0, 1}d → {0, 1}m is a k →ε k
′ condenser if for every k-source

X on {0, 1}n, Con(X ,Ud) is ε-close to some k ′-source. Con is lossless if k ′ = k + d .

Condensers can be viewed from graph perspective.

Lemma

Let n, d ,m ∈ N, K = 2k ∈ N and ε > 0. A function Con : {0, 1}n × {0, 1}d → {0, 1}m is
a k →ε k + d lossless condenser if and only if the corresponding bipartite multigraph
G = ([2n], [2m],E ) of left degree D = 2d is an (= K , (1− ε)D) vertex expander.

Here bipartite multigraph G = ([N], [M],E ) of left degree D is an (= K , γ) vertex
expander if and only if ∀S ⊂ [N] |S | = K =⇒ |{u|∃v ∈ S (v , u) ∈ E}| ≥ γ|S |
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Condenser construction

A useful construction of lossless condenser is based on Parvaresh-Vardy codes [PV05]

Theorem

∀n ∈ N, kmax ≤ n, ε > 0 and α ∈ (0, log2(nkmax/ε)
log2(log2(nkmax/ε)

) there is an explicit function

Con : {0, 1}n × {0, 1}d → {0, 1}m with d = (1 + 1
α) · (log2 n+ log2 kmax + log2

1
ε ) +O(1)

and m ≤ 2d + (1 + α)kmax such that for all k ≤ kmax, Con is a k →ε k + d condenser.

6 / 12



Block sources

Block source

A random variable X = (X1,X2, · · ·Xt) is a (k1, k2, · · · kt) block source if for every
x1, · · · xi−1, Xi |X1=x1...Xi−1=xi−1

is a ki -source.

Block sources allow us to extract bits from each block basically independently.

Lemma

Let Ext1 : {0, 1}n1 × {0, 1}d1 → {0, 1}m1 be (k1, ε1)-extractor, and
Ext2 : {0, 1}n2 × {0, 1}d2 → {0, 1}m2 be (k2, ε2)-extractor with m2 ≥ d1. Let
Ext′((x1, x2), y2) = (Ext1(x1, y1), z2) where (y1, z2) := Ext(x2, y2).
Then for every (k1, k2) block source X = (X1,X2) in {0, 1}n1 × {0, 1}n2 it holds than
Ext′(X ,Ud2) is (ε1 + ε2)-close to Um1 × Um2−d1 .

The lemma can be extended to extracting from many blocks.
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Block sources

Actually, high min-entropy sources are block sources.

Lemma

If X is a (n, n −∆)-source and X = (X1,X2) is a partition of X into blocks of lengths n1
and n2 then (X1,X2) is ε-close to some (n1 −∆, n2 −∆− log2

1
ε ) block sources.

Another lemma, which helps extract the remaining min-entropy.

Lemma

Let Ext1 : {0, 1}n × {0, 1}d1 → {0, 1}m1 be (k1, ε1)-extractor, and
Ext2 : {0, 1}n × {0, 1}d2 → {0, 1}m2 be (k2, ε2)-extractor with k2 ≤ k1 −m1 − s. Then
E ′{0, 1}n × {0, 1}d1+d2 → {0, 1}m1+m2 defined by E ′(x , (y1, y2)) = (E1(x , y1),E2(x , y2))
is a (k1,

1
1−2−s · ε1 + ε2)-extractor
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Ideas of best construction

To construct the optimal up to constant factor construction ([GUV09]), we will firstly
construct the extractors with output length m ≥ k

2 in the following steps:
1. Applies the condenser to get a source X ′ which is ε0-close to a k-source of length
9
8k + O(log n + log 1

ε0
).

2. Divides X ′ into two halves (X1,X2). Now the source (X1,X2) is 2ε0-close to a w × k ′

block source with k ′ = k
2 − k

8 − O(log n
ε0
).

3. Apply block source extraction with Ext1 (which is recursively constructed, uses d
random bits and extracts ≥ k ′

2 ≥ k
6 bits) and Ext2 (which uses only d

8 random bits and
gives d output bits).
4. The steps described above extracted only k

6 bits. Applying the last lemma with this

construction, repeated 4 times, we can extract ≥ k
2 bits.

Theorem

Let constant α > 0. ∀n ∈ N, k ∈ [0, n] and ε > 0 there is an explicit (k , ε)-extractor
Ext : {0, 1}n × {0, 1}d → {0, 1}m with m ≥ (1− α)k and d = O(log n

ε )
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Open problems

Open problem 1

Give an explicit construction of (k , 0.01)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with
seed length d = O(log n) and output length m = k + d − O(1).

Open problem 2

Give an explicit construction of (k , 0.01)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with
seed length d = log n + O(1) and output length m = Ω(k).

Based on survey by S. Vadhan ([Vad12]).
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Questions
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