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Постановка задачи
Неформально

Имеется сервер и N пользователей, но в каждый момент
времени не более Kα << N пользователей активно.
Активные пользователи посылают серверу сообщения,
однако они “склеиваются“, а ещё к ним добавляется шум.
Задача сервера — расшифровать исходные сообщения.
Наша задача — минимизировать длину кодовых слов.
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Постановка задачи
В частном случае

Пусть:
M — количество кодовых слов, n — длина сообщения,
ε — вероятность ошибки,
W1, . . . ,WKα ∼ U[M] — посылаемые пользователями
сообщения,
c1, . . . , cM ∈ Rn — кодовые слова,
Y =

∑Kα
j=1 cWj

+ Z , Z ∼ N (0, In) — сообщение,
полученное сервером,
g : Rn →

([M]
Kα

)
— декодировщик,

Ej = {Wj ̸∈ g(Y ))} ∪ {Wj = Wi для i ̸= j} — событие
ошибки j–ого пользователя.

Схема кодирования называется (N,M, n, ε)–кодом с
произвольным доступом, если выполнено

1

Kα

Kα∑
j=1

P[Ej ] ≤ ε.
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Альтернативная формулировка

Вместо c1, . . . , cM фиксируем матрицу

X =

 | | |
c1 c2 . . . cM
| | |


и сопоставляем сообщениям W1, . . . ,WKα вектор
β ∈ {0, 1}M , такой что

βi =

{
1, i ∈ {W1, . . . ,WKα}
0, иначе

.

Тогда Y = Xβ.
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Дополнительное ограничение

Рассмотрим коды с ограниченной энергией: существует
константа P, такая что все ∥cj∥22 ≤ nP .
Удельной энергией кода называется величина E = nP

2 log2 M
.

Задача — получить оценку на inf{E} по всем
(N,M, ε, E ,Kα)–кодам с произвольным доступом при
фиксированных N, M, ε, Kα.
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Первая оценка [1]

Идея доказательства:
Взять
c1, . . . , cM ∼ N (0,P ′In).
g(Y ) =

argminS⊂[M]

∥∥∥∑j∈S cj − Y
∥∥∥
2
.

Или g(Y ) =
argminβ∈{0,1}M ∥Xβ − Y ∥2.
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Вторая оценка [2]

Зафиксируем µ = Kα
N и определим

E∗(M, µ, ε) = lim
N→∞

inf{E | Существует (N,M, ε, E , µN) код}.

Тогда
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Сравнение оценок

Оценки на E∗ для разных µ при M = 2100 и ε = 10−3 [2].

Зелёным помечена оценка [2], красным — [1].
Задача — придумать неасимптотический аналог оценки [2].
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Неравенство Гордона

В доказательстве [1] используется неравенство Чернова, а в
[2] добавляется неравенство Гордона (теорема A из [3]):

Теорема

Пусть {Xij}, {Yij} — два центрированных гауссовских
процесса, удовлетворяющие следующим свойствам:

Для всех i , j , k выполнено E|Xij − Xik |2 ≤ E|Yij − Yik |2.
Для i ̸= l выполнено E|Xij − Xlk |2 ≥ E|Yij − Ylk |2.

Тогда Emini maxj Xij ≤ Emini maxj Yij .

В альтернативной формулировке все элементы X имеют
распределение N (0, σ2), поэтому {(Xβ)i}β∈{0,1}M ,i∈[n] — это
гауссовский процесс.
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Промежуточные результаты
Оценка №1

Пусть χn(τ) — нецентрированное хи–распределение с
параметром τ порядка n и зафиксируем b > 0.

Теорема

Пусть ε1 ∈ (0, 1), а z — это (1− ε1)–квантиль распределения
χn(

√
n

b
√
Kα

). Если n√
n+1

−
√
M

2
√
Kα

− n
b
√
Kα

− z > 0, то существует
схема кодирования с вероятностью ошибки не более

ε1 + exp

−1

2

(
n√
n + 1

−
√
M

2
√
Kα

− n

b
√
Ka

− z

)2


и удельной энергией E = b2

2 log2 M
.
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Промежуточные результаты
Оценка №2

Теорема

Пусть E — математическое ожидание величины
распределения χn(

√
n

b
√
K a

). Если

E −
√
n −

√
M

2
√
Ka

− n

b
√
Ka

> 0,

то существует схема кодирования с вероятностью ошибки не
более

exp

−1

8

(
E −

√
n −

√
M

2
√
Ka

− n

b
√
Ka

)2


и удельной энергией E = b2

2 log2 M
.
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Различие оценок

Первая:
n√
n + 1

−
√
M

2
√
Kα

− n

b
√
Kα

− z > 0

— работает, если χn(
√
n

b
√
Kα

) принимает маленькие значения.
Вторая:

E −
√
n −

√
M

2
√
Kα

− n

b
√
Kα

> 0

— работает, если χn(
√
n

b
√
Kα

) принимает большие значения.
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Промежуточные результаты
Оценка №3

Теорема

Положим τ = nb√
n+1

√
2t − b

√
M − 2n и

qt =

{
exp

(
−1

2τ
2
)
, τ > 0,

1, иначе
.

Тогда существует схема кодирования с верояностью ошибки
не более

1

Ka

Ka∑
t=1

qt

и удельной энергией E = b2

2 log2 M
.
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