

KANs meet Tabular DL

Георгий Булгаков, 3 курс ФПМИ

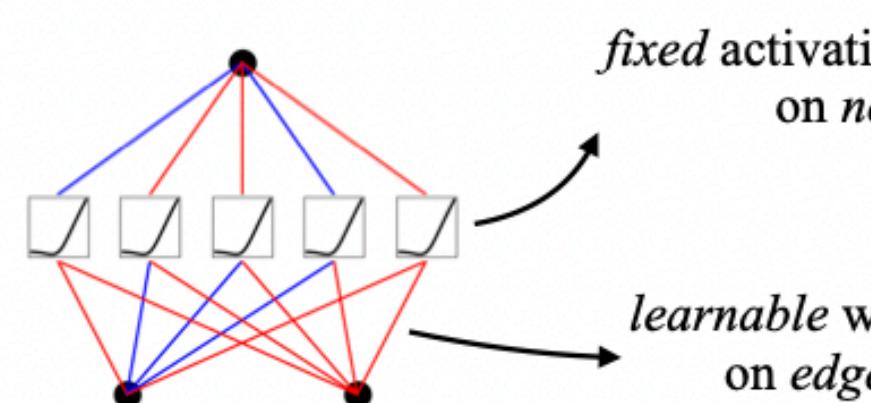
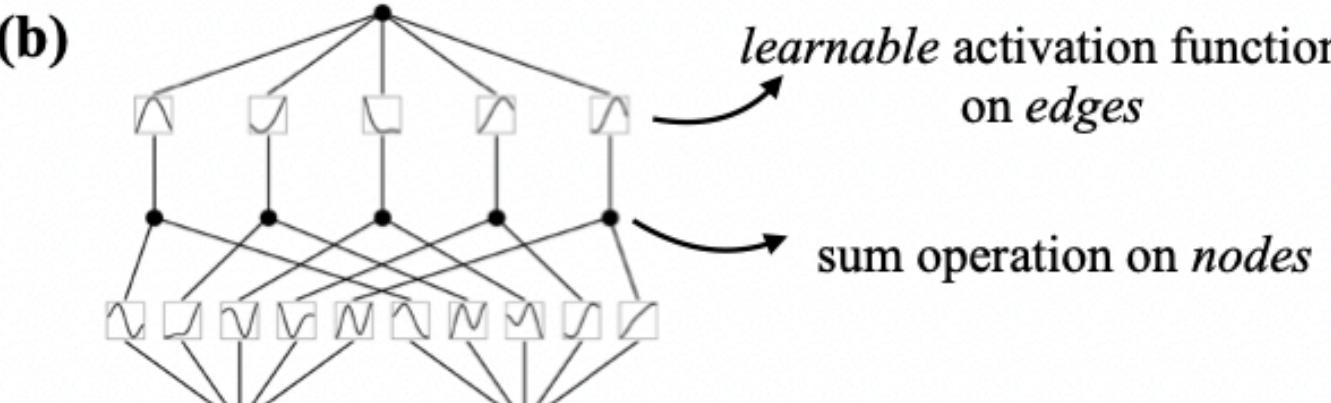
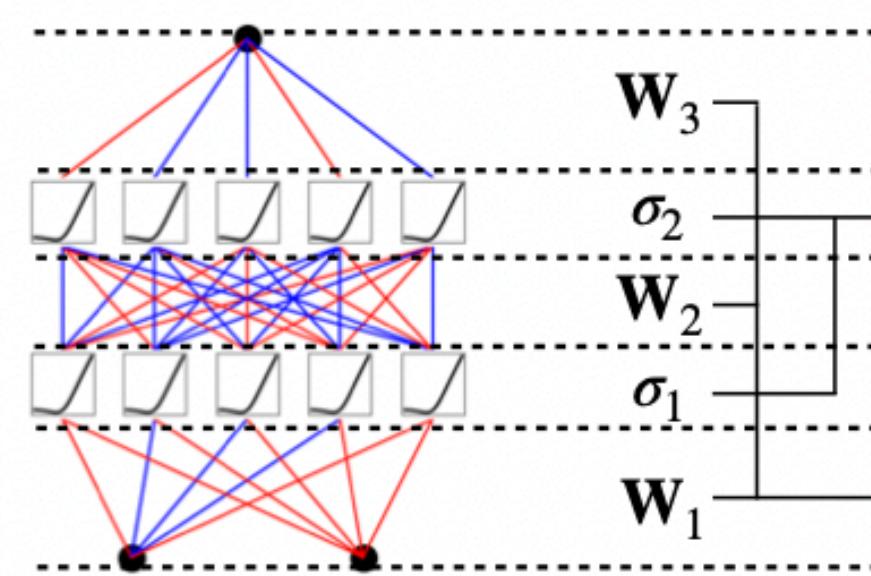
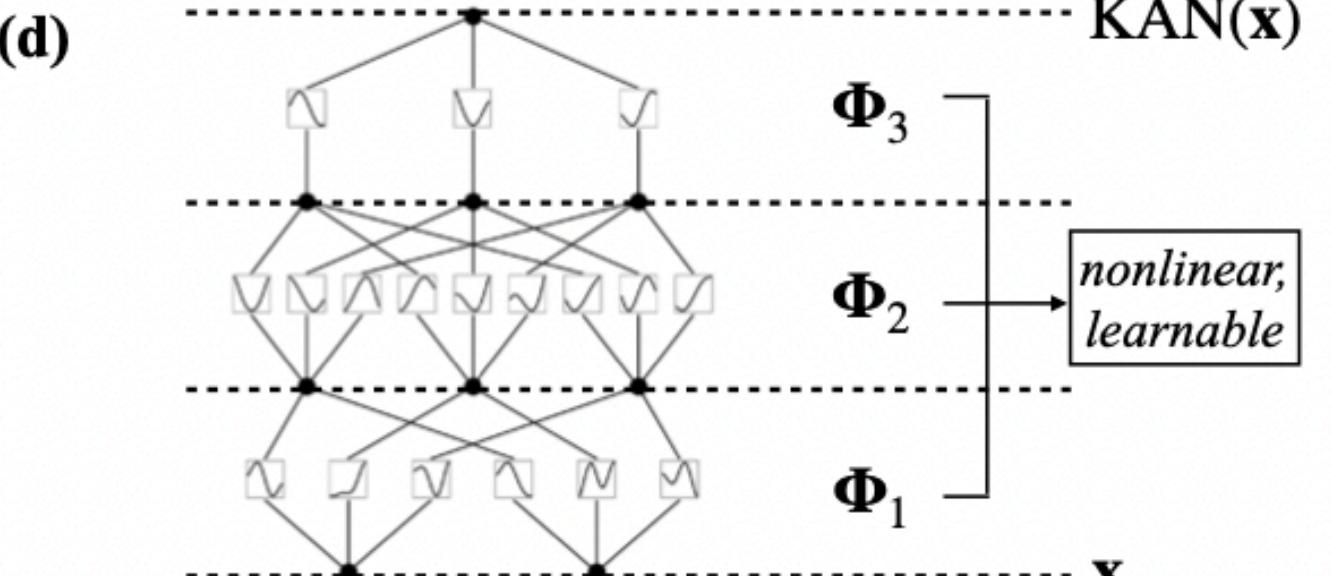
Данил Руденко, 3 курс ФПМИ

Научные руководители:

Глеб Молодцов и Даниил Медяков, МФТИ и BRAIn LAB

KAN's Basics

Idea: learnable activations!

Model	Multi-Layer Perceptron (MLP)	Kolmogorov-Arnold Network (KAN)
Theorem	Universal Approximation Theorem	Kolmogorov-Arnold Representation Theorem
Formula (Shallow)	$f(\mathbf{x}) \approx \sum_{i=1}^{N(\epsilon)} a_i \sigma(\mathbf{w}_i \cdot \mathbf{x} + b_i)$	$f(\mathbf{x}) = \sum_{q=1}^{2n+1} \Phi_q \left(\sum_{p=1}^n \phi_{q,p}(x_p) \right)$
Model (Shallow)	<p>(a) </p> <p><i>fixed activation functions on nodes</i></p> <p><i>learnable weights on edges</i></p>	<p>(b) </p> <p><i>learnable activation functions on edges</i></p> <p><i>sum operation on nodes</i></p>
Formula (Deep)	$\text{MLP}(\mathbf{x}) = (\mathbf{W}_3 \circ \sigma_2 \circ \mathbf{W}_2 \circ \sigma_1 \circ \mathbf{W}_1)(\mathbf{x})$	$\text{KAN}(\mathbf{x}) = (\Phi_3 \circ \Phi_2 \circ \Phi_1)(\mathbf{x})$
Model (Deep)	<p>(c) </p> <p><i>MLP(\mathbf{x})</i></p> <p>\mathbf{W}_3</p> <p>σ_2</p> <p>\mathbf{W}_2</p> <p>σ_1</p> <p>\mathbf{W}_1</p> <p>\mathbf{x}</p> <p><i>nonlinear, fixed</i></p> <p><i>linear, learnable</i></p>	<p>(d) </p> <p><i>KAN(\mathbf{x})</i></p> <p>Φ_3</p> <p>Φ_2</p> <p>Φ_1</p> <p>\mathbf{x}</p> <p><i>nonlinear, learnable</i></p>

Core Theorem

Kolmogorov-Arnold theorem, [2]

Theorem 1 (Representation of continuous functions on a compact set). *Let $f: [0, 1]^n \rightarrow \mathbb{R}$ be a continuous function of n variables defined on the unit cube. Then f can be represented in the form:*

$$f(x_1, \dots, x_n) = \sum_{q=1}^{2n+1} \Phi_q \left(\sum_{p=1}^n \Phi_{q,p}(x_p) \right),$$

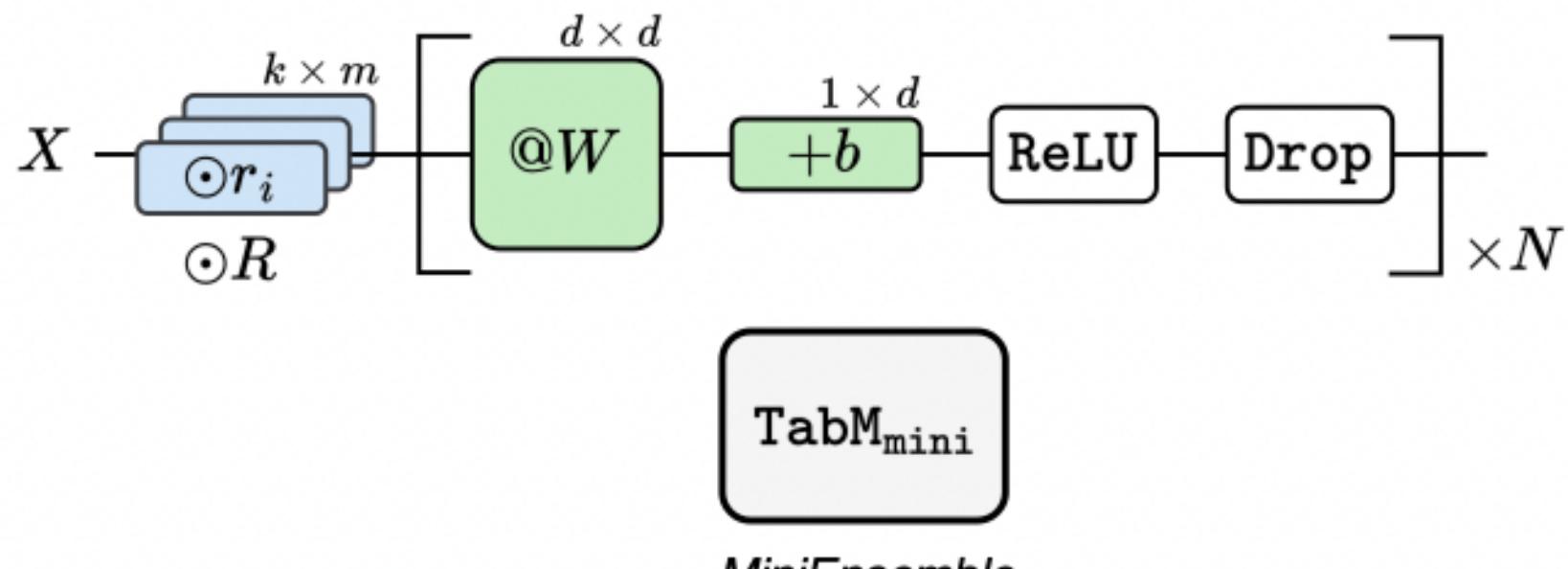
where the functions $\Phi_{q,p}: [0, 1] \rightarrow \mathbb{R}$ and $\Phi_q: \mathbb{R} \rightarrow \mathbb{R}$ are continuous for all $p = 1, \dots, n$ and $q = 1, \dots, 2n + 1$.

Our Research

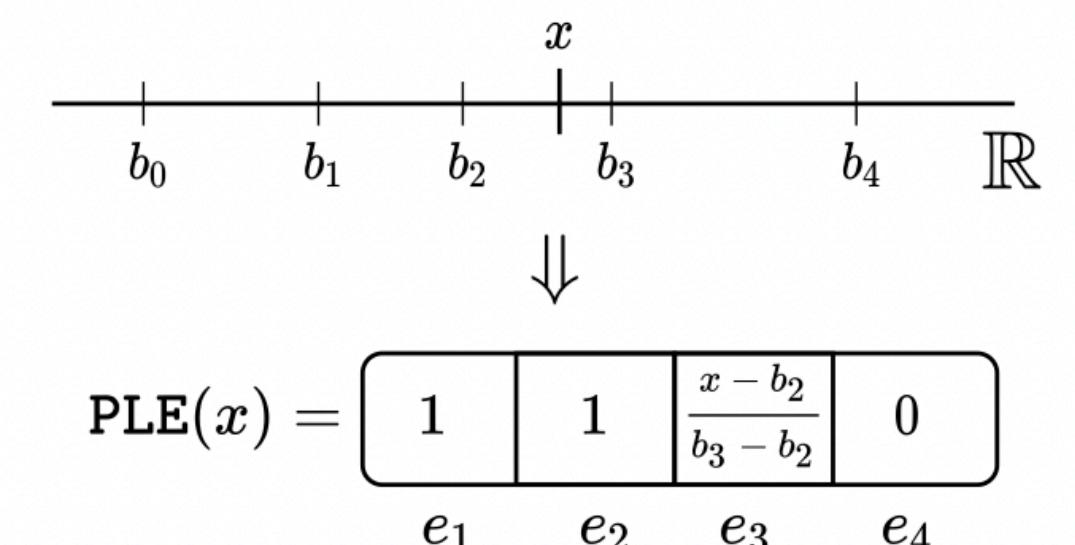
Why Tabular DL?

- * DL models began to outperform GBDT (CatBoost, XGBoost, LightGBM);
- * MLP-based models perform great ([3], [4]);
- * Tabular data often is low dimensional;
- * So, **KAN can surpass MLP!**

CatBoost



TabM_{mini}, [3]



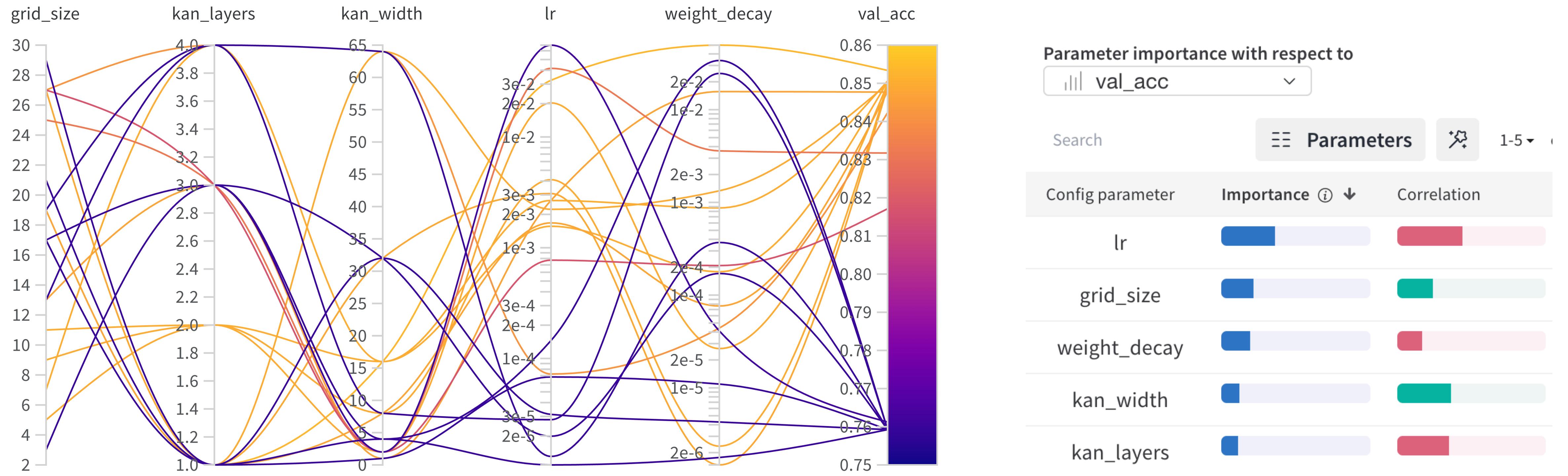
Piecewise Linear Encoding, [4]

What's done?

Experiments and progress

- ✓ Built the pipeline for our experiments (...);
- ✓ BatchNorm and Dropout in KAN;
- ✓ Different KAN-based approaches (KAN [1], efficientKAN [5], ChebyKAN [6], FastKAN [7]);
- ✓ KAN with Piecewise Linear Embedding and Periodic Embedding ([3]);
- KAN combined with MLP
- Various optimizers (AdamW [8], AdEMAmix [9], Muon [10], MARS [11])

Hyperparameters



Example: tuning KAN on Adult dataset

BatchNorm mystery

First series

Model	adult ↑	gesture ↑	california ↓ (MS)	churn ↑	eye ↑
BatchNorm	0,843 +- 0,003	0,561 +- 0,008	0,654 +- 0,045	0,854 +- 0,004	0,592 +- 0,008
Dropout 0,5	0,808 +- 0,004	0,487 +- 0,003	0,897 +- 0,070	0,796 +- 0,002	0,457 +- 0,008
Vanila	0,811 +- 0,005	0,489 +- 0,003	0,893 +- 0,075	0,796 +- 0,002	0,476 +- 0,009

Second series

Model	adult ↑	gesture ↑	california ↓	churn ↑	house ↓
KAN	0,854 +- 0,001	0,539 +- 0,005	0,427 +- 0,006	0,854 +- 0,004	0,696 +- 0,005
KAN PLR	0,869 +- 0,001	0,557 +- 0,006	0,409 +- 0,004	0,856 +- 0,001	0,655 +- 0,006
KAN PLE-Q	0,859 +- 0,001	0,571 +- 0,010	0,395 +- 0,003	0,850 +- 0,011	0,626 +- 0,004
BatchNorm KAN	0,845 +- 0,002	0,549 +- 0,005	0,517 +- 0,010	0,860 +- 0,004	0,688 +- 0,028
BatchNorm KAN PLR	0,867 +- 0,001	0,564 +- 0,005	0,408 +- 0,004	0,858 +- 0,002	0,654 +- 0,012
BatchNorm KAN PLE	0,853 +- 0,001	0,586 +- 0,004	0,396 +- 0,006	0,862 +- 0,002	0,627 +- 0,005

Explanation: Data preprocessing

BatchNorm & Dropout conclusion

✗ Dropout is not needed

✗ BatchNorm is not always useful.

Model	adult ↑	gesture ↑	california ↓	churn ↑	house ↓
KAN	0,854 +- 0,001	0,539 +- 0,005	0,427 +- 0,006	0,854 +- 0,004	0,696 +- 0,005
KAN PLR	0,869 +- 0,001	0,557 +- 0,006	0,409 +- 0,004	0,856 +- 0,001	0,655 +- 0,006
KAN PLE-Q	0,859 +- 0,001	0,571 +- 0,010	0,395 +- 0,003	0,850 +- 0,011	0,626 +- 0,004
BatchNorm KAN	0,845 +- 0,002	0,549 +- 0,005	0,517 +- 0,010	0,860 +- 0,004	0,688 +- 0,028
BatchNorm KAN PLR	0,867 +- 0,001	0,564 +- 0,005	0,408 +- 0,004	0,858 +- 0,002	0,654 +- 0,012
BatchNorm KAN PLE	0,853 +- 0,001	0,586 +- 0,004	0,396 +- 0,006	0,862 +- 0,002	0,627 +- 0,005

Different KANs

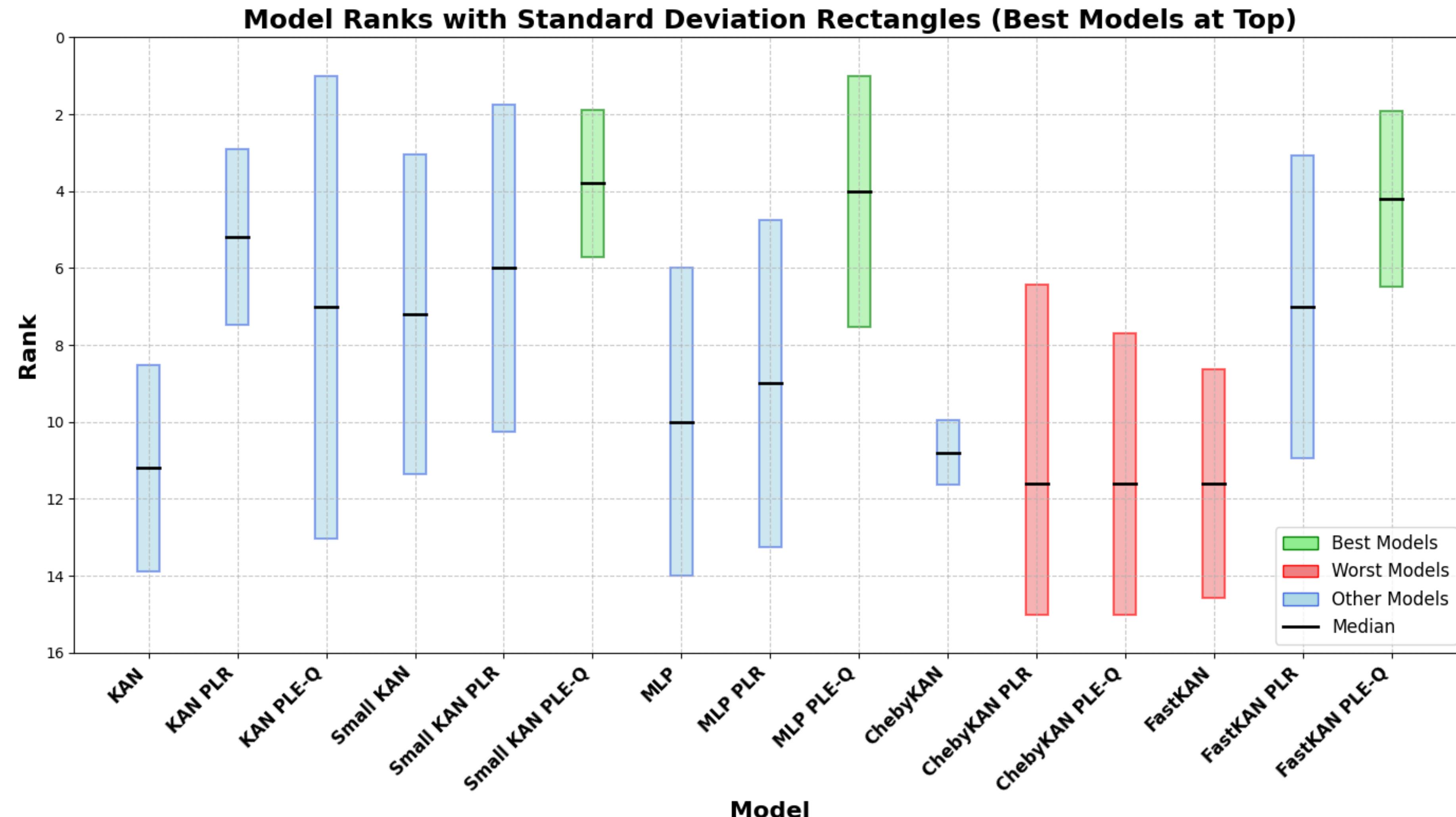
Which base function is the best?

Model	Function	Rank	Train Time Ratio	Test Time Ratio
KAN	B-splines	$2,8 \pm 1,3$	$2,73 \pm 0,82$	$3,81 \pm 0,94$
Small KAN	B-splines	$1,8 \pm 1,3$	$2,6 \pm 0,62$	$3,65 \pm 0,61$
MLP	--	$3,0 \pm 1,87$	1 ± 0	1 ± 0
ChebyKAN	Chebyshev Polinomials	$3,2 \pm 1,3$	$1,39 \pm 0,28$	$1,55 \pm 0,27$
FastKAN	RBF	4 ± 1	$1,72 \pm 0,48$	$2,02 \pm 0,54$

Our comparison of different models on 5 datasets

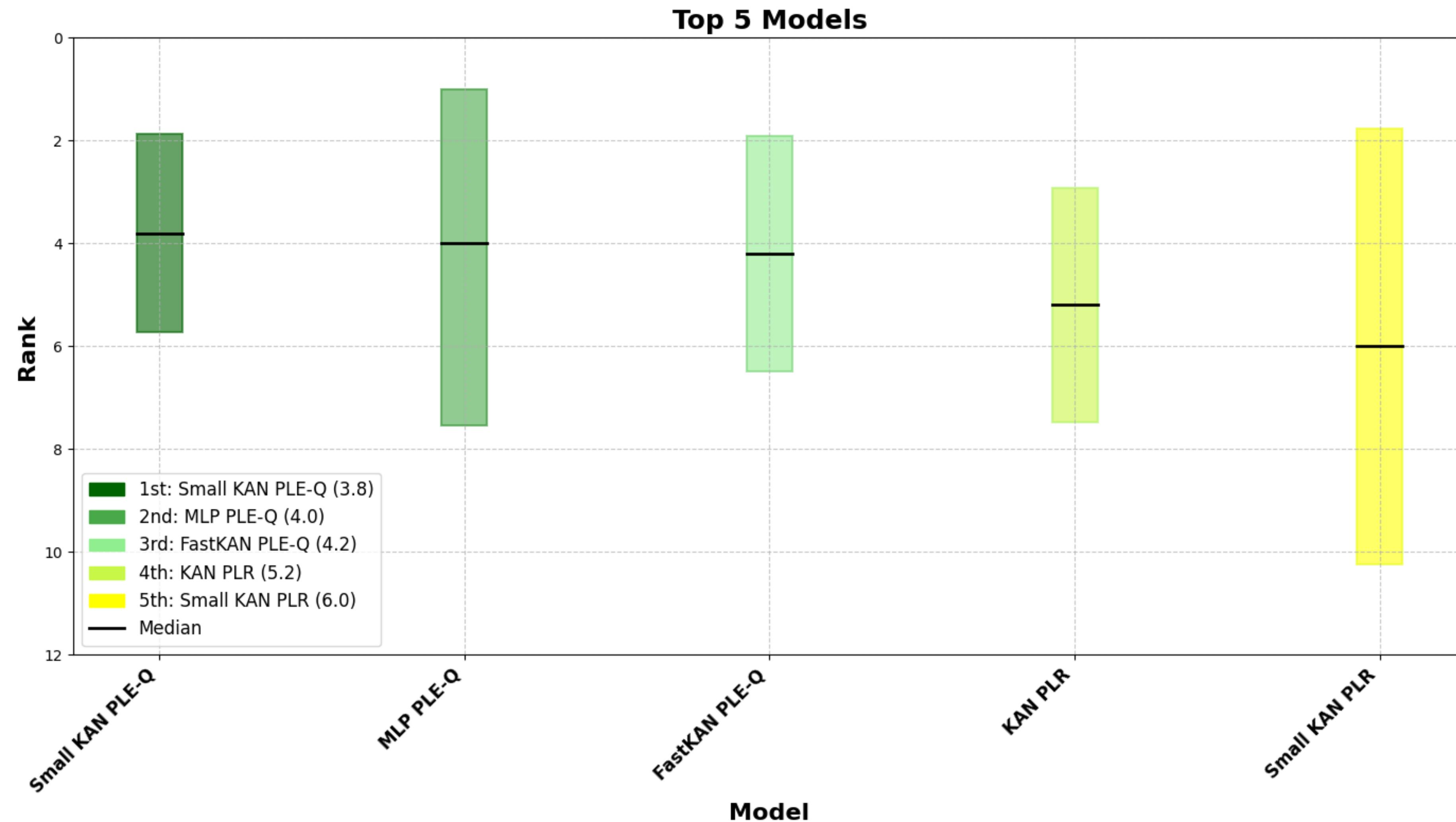
General comparison

All models



General Comparison

Best models



Time issues

KANs are much slower

Model	Train Time Ratio	Test Time Ratio
Small KAN PLE-Q	$3,72 \pm 0,82$	$4,38 \pm 0,47$
MLP PLE-Q	$1,14 \pm 0,18$	$1,33 \pm 0,15$
FastKAN PLE-Q	$1,99 \pm 0,39$	$2,45 \pm 0,31$
KAN PLR	$4,92 \pm 1,01$	$5,89 \pm 0,95$
Small KAN PLR	$3,95 \pm 0,82$	$4,53 \pm 0,65$

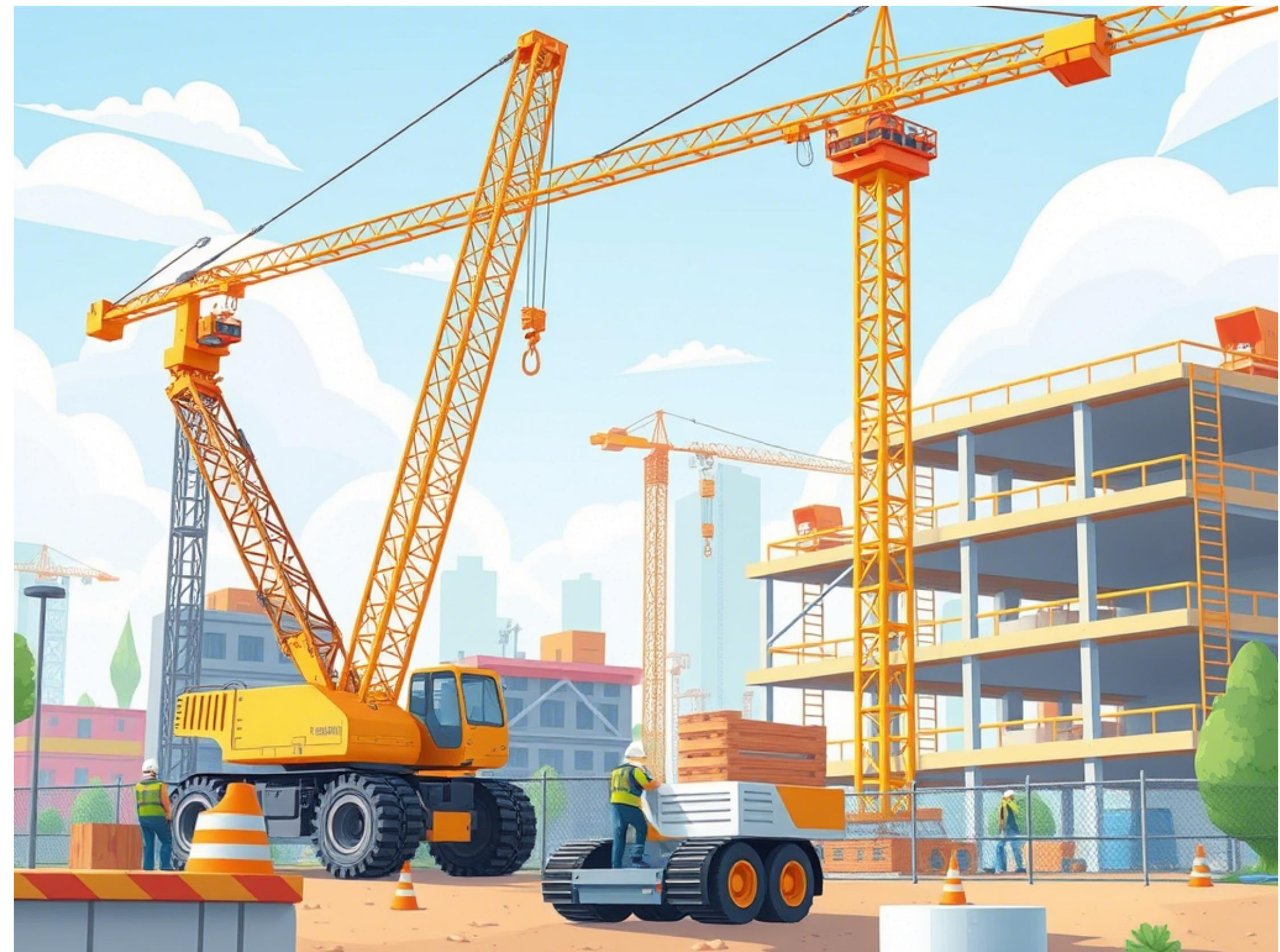
Best models time comparison

Conclusion: FastKAN is very promising for ensembles.

Different Optimizers

🏗 Results are coming...🏗

- ▶ **AdamW [8]**
- ▶ **AdEMAmix [9]**
- ▶ **Muon [10]**
- ▶ **MARS [11]**



Future work

And current tasks

- Make efficient ensemble of KANs (like TabM, [3]);
- Analyse embeddings in ensembles;
- Test different optimizers;
- Analyse hyperparameters more.

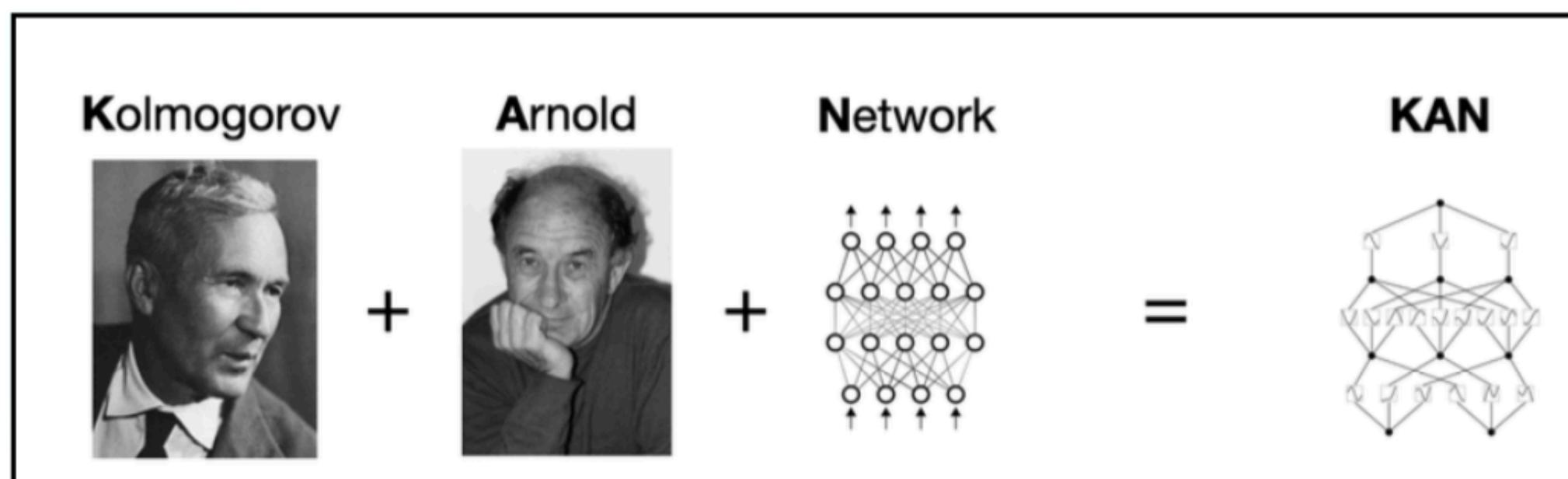


Figure from [1]

Conclusion

- KANs are promising alternative to MLP in Tabular DL
- However, without proper improvements MLPs are not worse;
- **TabM-KAN** could be very accurate!
- Type of KAN is important;
- Time issues need more analysis and optimization.

References

- [1] Ziming Liu et al., *KAN: Kolmogorov-Arnold Networks*.
- [2] Wikipedia, *Kolmogorov-Arnold Representation Theorem*.
- [3] Y.Gorishniy et al., *TabM: Advancing Tabular Deep Learning with Parameter-Efficient Ensembling*.
- [4] Y.Gorishniy et al., *On Embeddings for Numerical Features in Tabular Deep Learning*.
- [5] Bleatan, *efficient-kan*, <https://github.com/Blealtan/efficient-kan>.
- [6] SynodicMonth, *ChebyKAN*, <https://github.com/SynodicMonth/ChebyKAN>.
- [7] ZiyaoLI, *fast-kan*, <https://github.com/ZiyaoLi/fast-kan>.
- [8] Ilya Loshchilov, Frank Hutter, *Decoupled Weight Decay Regularization*.
- [9] Matteo Pagliardini et al., *The AdEMAMix Optimizer: Better, Faster, Older*.
- [10] Jingyuan Liu et al., *Muon is Scalable for LLM Training*.
- [11] Huizhuo Yan et al., *MARS: Unleashing the Power of Variance Reduction for Training Large Models*.

Thanks for attention!