KANs meet Tabular DL
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KAN’s Basics

ldea: learnable activations!

Model

Multi-Layer Perceptron (MLP)

Kolmogorov-Arnold Network (KAN)

Theorem

Universal Approximation Theorem

Kolmogorov-Arnold Representation Theorem
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Basic figure from [1]



https://arxiv.org/abs/2404.19756

Core Theorem

Kolmogorov-Arnold theorem, [2]

Theorem 1 (Representation of continuous functions on a compact set). Let
f:10,1]™ — R be a continuous function of n variables defined on the unit cube.
Then f can be represented in the form:

2n+1
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where the functions ®,,: (0,1 - R and ®,: R — R are continuous for all
p=1,....nandg=1,...,2n+ 1.



Our Research
Why Tabular DL?

X DL models began to outperform GBDT (CatBoost, XGBoost, LightGBM);
X MLP-based models perform great ([3], [4]);

X Tabular data often is low dimensional:

*So, KAN can surpass MLP!
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MiniEnsemble

CatBoost TabMmini,3] Piecewise Linear Encoding, [4]
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What’s done?

Experiments and progress

v/ Bluilt the pipeline for our experiments (...);

v BatchNorm and Dropout in KAN;

v Different KAN-based approaches (KAN [1], efficientKAN [5], ChebyKAN [6],
FastKAN [7]);

v KAN with Piecewise Linear Embedding and Periodic Embedding ([3]);
@® KAN combined with MLP
@ Various optimizers (AdamW [8], AAEMAmiIx [9], Muon [10], MARS [11])



Hyperparameters
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https://wandb.ai/georgy-bulgakov/New%20TAB-KAN%20study/sweeps/lp7l9wjc?nw=nwusergbulgakov

First series

BatchNorm mystery

Model adult 1 gesture 1 california | (MS|churn 1 eye 1 l
BatchNorm 0,843 +- 0,003 |0,561 +-0,008 0,654 +- 0,045 (0,854 +-0,004 |0,592 +- 0,008
Dropout 0,5 0,808 +- 0,004 10,487 +- 0,003 0,897 +- 0,070 (0,796 +- 0,002 10,457 +- 0,008
Vanila 0,811 +- 0,005 0,489 +- 0,003 0,893 +- 0,075 |0,796 +- 0,002 (0,476 +- 0,009
Second series

Model adult 1 gesture 1T california { churn 1 house {

KAN 0,854 +- 0,001 |0,539 +- 0,005 10,427 +- 0,006 0,854 +- 0,004 |0,696 +- 0,005

KAN PLR 0,869 +- 0,001 |0,557 +- 0,006 |0,409 +- 0,004 0,856 +- 0,001 |0,655 +- 0,006

KAN PLE-Q 0,859 +- 0,001 |0,571 +- 0,010 |0,395 +- 0,003 0,850 +- 0,011 |0,626 +- 0,004

BatchNorm KAN 0,845 +- 0,002 |0,549 +- 0,005 |0,517 +- 0,010 0,860 +- 0,004 |0,688 +- 0,028

BatchNorm KAN PLR| 0,867 +- 0,001 |0,564 +- 0,005 |0,408 +- 0,004 0,858 +- 0,002 |0,654 +- 0,012

BatchNorm KAN PLE; 0,853 +- 0,001 |0,586 +- 0,004 |0,396 +- 0,006 0,862 +- 0,002 |0,627 +- 0,005

Explanation: Data preprocessing




X Dropout is not needed

?

BatchNorm is not always useful.

BatchNorm & Dropout conclusion

Model adult T gesture 1 california { churn 1 house |

KAN 0,854 +- 0,001 |0,539 +- 0,005 |0,427 +- 0,006 0,854 +- 0,004 |0,696 +- 0,005
KAN PLR 0,869 +- 0,001 |0,557 +- 0,006 |0,409 +- 0,004 0,856 +- 0,001 |0,655 +- 0,006
KAN PLE-Q 0,859 +- 0,001 |0,571 +- 0,010 |0,395 +- 0,003 0,850 +- 0,011 |0,626 +- 0,004
BatchNorm KAN 0,845 +- 0,002 |0,549 +- 0,005 |0,517 +- 0,010 0,860 +- 0,004 |0,688 +- 0,028
BatchNorm KAN PLR| 0,867 +- 0,001 |0,564 +- 0,005 |0,408 +- 0,004 0,858 +- 0,002 |0,654 +- 0,012
BatchNorm KAN PLE; 0,853 +- 0,001 |0,586 +- 0,004 |0,396 +- 0,006 0,862 +- 0,002 |0,627 +- 0,005




Different KANs

Which base function is the best?

Model  [Runcton  [Rank _ [TeinTimeRatio [TestTime Ratio

FastKAN 4 + 1 1,72 + 0,48 2,02 + 0.54

Our comparison of different models on 5 datasets



General comparison
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Rank

10 -

12 -

14 -

16

Model Ranks with Standard Deviation Rectangles (Best Models at Top)

e
L] 1 [

mE [ | [ Best Models
| [ | mmm Worst Models
[ Other Models

— Median

Q x x Q Q

& o > & & & o g & &
® » e 3 <® &
2 &




General Comparison

Best models

=
~ 6 - —
(o'
8 -
B 1st: Small KAN PLE-Q (3.8)
B 2nd: MLP PLE-Q (4.0)
10 - 3rd: FastKAN PLE-Q (4.2)
4th: KAN PLR (5.2)
5th: Small KAN PLR (6.0)
— Median
12 | | |
Q Q Q > P
NG N NG Y QY
& K K > s
& & o »
N o &
> >
9& 4 =)

Top 5 Models

Model




Time Issues

KANs are much slower

Model |Train Time Ratio Test Time Ratio
Small KAN PLE-Q |3,72 + 0,82 4,38 + 0,47
MLP PLE-Q 1,14 + 0.18 1,33 + 0,15

FastKAN PLE-Q |1,99 + 0,39 245+031
KAN PLR 4,92 + 1,01 5,89 + 0,95
Small KAN PLR (3,95 + 0,82 4,53 + 0,65

Best models time comparison

Conclusion: FastKAN is very promising for ensembles.



leferent Optlmlzers

ZResults are coming... =

> AdamW [8]
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> Muon [10]
> MARS [11]




Future work

And current tasks

 Make efficient ensemble of KANs (like TabM, [3]);
* Analyse embeddings in ensembles;
e Jest different optimizers;

* Analyse hyperparameters more.

Kolmogorov Arnold Network

Figure from [1]



Conclusion

 KANSs are promising alternative to MLP in Tabular DL
 However, without proper improvements MLPs are not worse;
« TabM-KAN could be very accurate!

* Type of KAN is important;

 [Ime issues need more analysis and optimization.
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Thanks for attention!



