KANs meet Tabular DL

Hay4yHble pykoBoaUTenm:
'ned Monoauos n laHunmn Measkos, MOOTU n BRAIn LAB

KAN’s Basics

ldea: learnable activations!

Model

Multi-Layer Perceptron (MLP)

Kolmogorov-Arnold Network (KAN)

Theorem

Universal Approximation Theorem

Kolmogorov-Arnold Representation Theorem

Formula
(Shallow)

N(e)

fx) ~) ao(w;-x+b)

=1

2n+1

(n)
= @, ¢,,x,)
g=1)

\ P=1

Model
(Shallow)

fixed activation functions
N on nodes

learnable weights
on edges

learnable activation functions
on edges

_J
NINNMNANANN S L

sum operation on nodes

Formula
(Deep)

MLP(X) - (W3 ©0j° W2 °©0) ° Wl)(X)

KAN(x) = (@ o @, o ®,)(X)

Model
(Deep)

J|\nonlinear,

fixed

linear,
learnable

nonlinear,
learnable

Basic figure from [1]

https://arxiv.org/abs/2404.19756

Core Theorem

Kolmogorov-Arnold theorem, [2]

Theorem 1 (Representation of continuous functions on a compact set). Let
f:10,1]™ — R be a continuous function of n variables defined on the unit cube.
Then f can be represented in the form:

2n+1

flxy,...,z,) = Z P, (Z q)q,p(zp)) ,

where the functions ®,,: (0,1 - R and ®,: R — R are continuous for all
p=1,....nandg=1,...,2n+ 1.

Our Research
Why Tabular DL?

X DL models began to outperform GBDT (CatBoost, XGBoost, LightGBM);
X MLP-based models perform great ([3], [4]);

X Tabular data often is low dimensional:

*So, KAN can surpass MLP!

— dxd S

S o r—>b
1

[kxm 1% d I;O 1;1 1;2 b3 I;4
X g o QW +b ReLU l— Drop I
OR XN i

PLE(:c):[1 s]
[TameiniJ €1 € € . €]

MiniEnsemble

CatBoost TabMmini,3] Piecewise Linear Encoding, [4]

https://arxiv.org/abs/2410.24210
https://arxiv.org/abs/2203.05556
https://arxiv.org/abs/2410.24210
https://arxiv.org/abs/2203.05556

What’s done?

Experiments and progress

v/ Bluilt the pipeline for our experiments (...);

v BatchNorm and Dropout in KAN;

v Different KAN-based approaches (KAN [1], efficientKAN [5], ChebyKAN [6],
FastKAN [7]);

v KAN with Piecewise Linear Embedding and Periodic Embedding ([3]);
@® KAN combined with MLP
@ Various optimizers (AdamW [8], AAEMAmiIx [9], Muon [10], MARS [11])

Hyperparameters

grid_size

30
28
26
24
22
20
18
16
14
12
10

8
6
4
2

kan_layers

kan_width

65

60
55
50
45
40

weight_decay

val_acc

0.86

0.85

0784/)/

//0/82

083

Parameter importance with respect to

11l val _acc

Search

Config parameter
lr
grid_size
weight_decay
kan_width

kan_layers

Example: tuning KAN on Adult dataset

v

== Parameters A3

Importance @ ¥

Correlation

1-5~

https://wandb.ai/georgy-bulgakov/New%20TAB-KAN%20study/sweeps/lp7l9wjc?nw=nwusergbulgakov

First series

BatchNorm mystery

Model adult 1 gesture 1 california | (MS|churn 1 eye 1 l
BatchNorm 0,843 +- 0,003 |0,561 +-0,008 0,654 +- 0,045 (0,854 +-0,004 |0,592 +- 0,008
Dropout 0,5 0,808 +- 0,004 10,487 +- 0,003 0,897 +- 0,070 (0,796 +- 0,002 10,457 +- 0,008
Vanila 0,811 +- 0,005 0,489 +- 0,003 0,893 +- 0,075 |0,796 +- 0,002 (0,476 +- 0,009
Second series

Model adult 1 gesture 1T california { churn 1 house {

KAN 0,854 +- 0,001 |0,539 +- 0,005 10,427 +- 0,006 0,854 +- 0,004 |0,696 +- 0,005

KAN PLR 0,869 +- 0,001 |0,557 +- 0,006 |0,409 +- 0,004 0,856 +- 0,001 |0,655 +- 0,006

KAN PLE-Q 0,859 +- 0,001 |0,571 +- 0,010 |0,395 +- 0,003 0,850 +- 0,011 |0,626 +- 0,004

BatchNorm KAN 0,845 +- 0,002 |0,549 +- 0,005 |0,517 +- 0,010 0,860 +- 0,004 |0,688 +- 0,028

BatchNorm KAN PLR| 0,867 +- 0,001 |0,564 +- 0,005 |0,408 +- 0,004 0,858 +- 0,002 |0,654 +- 0,012

BatchNorm KAN PLE; 0,853 +- 0,001 |0,586 +- 0,004 |0,396 +- 0,006 0,862 +- 0,002 |0,627 +- 0,005

Explanation: Data preprocessing

X Dropout is not needed

?

BatchNorm is not always useful.

BatchNorm & Dropout conclusion

Model adult T gesture 1 california { churn 1 house |

KAN 0,854 +- 0,001 |0,539 +- 0,005 |0,427 +- 0,006 0,854 +- 0,004 |0,696 +- 0,005
KAN PLR 0,869 +- 0,001 |0,557 +- 0,006 |0,409 +- 0,004 0,856 +- 0,001 |0,655 +- 0,006
KAN PLE-Q 0,859 +- 0,001 |0,571 +- 0,010 |0,395 +- 0,003 0,850 +- 0,011 |0,626 +- 0,004
BatchNorm KAN 0,845 +- 0,002 |0,549 +- 0,005 |0,517 +- 0,010 0,860 +- 0,004 |0,688 +- 0,028
BatchNorm KAN PLR| 0,867 +- 0,001 |0,564 +- 0,005 |0,408 +- 0,004 0,858 +- 0,002 |0,654 +- 0,012
BatchNorm KAN PLE; 0,853 +- 0,001 |0,586 +- 0,004 |0,396 +- 0,006 0,862 +- 0,002 |0,627 +- 0,005

Different KANs

Which base function is the best?

Model [Runcton [Rank _ [TeinTimeRatio [TestTime Ratio

FastKAN 4 + 1 1,72 + 0,48 2,02 + 0.54

Our comparison of different models on 5 datasets

General comparison

All models

Rank

10 -

12 -

14 -

16

Model Ranks with Standard Deviation Rectangles (Best Models at Top)

e
L] 1 [

mE [| [Best Models
| [| mmm Worst Models
[Other Models

— Median

Q x x Q Q

& o > & & & o g & &
® » e 3 <® &
2 &

General Comparison

Best models

=
~ 6 - —
(o'
8 -
B 1st: Small KAN PLE-Q (3.8)
B 2nd: MLP PLE-Q (4.0)
10 - 3rd: FastKAN PLE-Q (4.2)
4th: KAN PLR (5.2)
5th: Small KAN PLR (6.0)
— Median
12 | | |
Q Q Q > P
NG N NG Y QY
& K K > s
& & o »
N o &
> >
9& 4 =)

Top 5 Models

Model

Time Issues

KANs are much slower

Model |Train Time Ratio Test Time Ratio
Small KAN PLE-Q |3,72 + 0,82 4,38 + 0,47
MLP PLE-Q 1,14 + 0.18 1,33 + 0,15

FastKAN PLE-Q |1,99 + 0,39 245+031
KAN PLR 4,92 + 1,01 5,89 + 0,95
Small KAN PLR (3,95 + 0,82 4,53 + 0,65

Best models time comparison

Conclusion: FastKAN is very promising for ensembles.

leferent Optlmlzers

ZResults are coming... =

> AdamW [8]

g =X
LAY

> AAdEMAmix [9]

<]

)

N

> Muon [10]
> MARS [11]

Future work

And current tasks

 Make efficient ensemble of KANs (like TabM, [3]);
* Analyse embeddings in ensembles;
e Jest different optimizers;

* Analyse hyperparameters more.

Kolmogorov Arnold Network

Figure from [1]

Conclusion

 KANSs are promising alternative to MLP in Tabular DL
 However, without proper improvements MLPs are not worse;
« TabM-KAN could be very accurate!

* Type of KAN is important;

 [Ime issues need more analysis and optimization.

References

[1] Ziming Liu et al., KAN: Kolmogorov-Arnold Networks.

[2] Wikipedia, Kolmogorov-Arnold Representation Theorem.

[3] Y.Gorishniy et al., TabM: Advancing Tabular Deep Learning with Parameter-Efficient Ensembling.

[4] Y.Gorishniy et al., On Embeddings for Numerical Features in Tabular Deep Learning .

[5] Bleatan, efficient-kan, https://qgithub.com/Blealtan/efficient-kan.

[6] SynodicMonth, ChebyKAN, https://github.com/SynodicMonth/ChebyKAN.

[7] Ziyaoll, fast-kan, https.//qgithub.com/ZiyaolLi/fast-kan.

[8] llya Loshchilov, Frank Hutter, Decoupled Weight Decay Reqgularization.

[9] Matteo Pagliardini et al., The AAEMAMIix Optimizer: Better, Faster, Older.

[10] Jingyuan Liu et al., Muon is Scalable for LLM Training.

[11] Huizhuo Yan et al., MARS: Unleashing the Power of Variance Reduction for Training Large Models.

https://arxiv.org/abs/2404.19756
https://arxiv.org/abs/2404.19756
https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%9A%D0%BE%D0%BB%D0%BC%D0%BE%D0%B3%D0%BE%D1%80%D0%BE%D0%B2%D0%B0_%E2%80%94_%D0%90%D1%80%D0%BD%D0%BE%D0%BB%D1%8C%D0%B4%D0%B0
https://arxiv.org/abs/2410.24210
https://arxiv.org/abs/2203.05556
https://github.com/Blealtan/efficient-kan
https://github.com/SynodicMonth/ChebyKAN
https://github.com/ZiyaoLi/fast-kan
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2409.03137
https://arxiv.org/abs/2502.16982
https://arxiv.org/abs/2411.10438

Thanks for attention!

