KAN

[TpumeHeHne ceten Konmoroposa-ApHonbaa ang
pelleHns 3agay KOMMNbITEPHOIo 3pPEeHNS

[lnaH goknaga

1)
2)
3)
4)
5)

PaHHAs paboTa (cpasy nocre nepsoro gokraga)
[lanbHenwwee npoaBmXeHne

Tekywine pesynesraThbl

Tekyuwme npobnemsol

[lanbHenwee nccnegoBaHne

OcHoBHaga noesa KAN

Model | Multi-Layer Perceptron (MLP) | Kolmogorov-Arnold Network (KAN)
Theorem Universal Approximation Theorem Kolmogorov-Arnold Representation Theorem
" l N(€) 2n+1 n
ormula s
(Shallow) fx) = Z aio(w;- X +b)) fix) = Z @, z Py (%p)
i=1 g=1 p=1
fixed activation functions (b) «»';mt» learnable activation functions
IR, / on nodes A wYs on edges
Model NP /L
(Shallow) / J ~/ sum operation on nodes
learnable weights
i on edges
iy MLP(x) = (W;© 5,0 W, 0 6,0 W))(X)

Model
(Deep)

MLP(x)

nonlinear,

fixed

linear,
learnable

nonlinear,
learnable

PaHHsAA paboTa (Ao nepBoro aoknaaa)

CocTtaBneHune npobHoro nMTob3opa:
https://docs.qoodle.com/document/d/1BmdW4PVTmEM5WA25ypggX

OwdJL_42EFL2BYIEtCwwbSi4/edit?tab=t.0 (donel!) -> EASY

nosTopeHue akcnepumeHTa (done!) -> MEDIUM

https://docs.google.com/document/d/1BmdW4PVTmEM5WA25ypgqXOwJL_42EFL2BYlEtCww5f4/edit?tab=t.0
https://docs.google.com/document/d/1BmdW4PVTmEM5WA25ypgqXOwJL_42EFL2BYlEtCww5f4/edit?tab=t.0

[loBTOpEHME 3KCNEPUMEHTA

Model MNIST H CIFAR10 CIFAR100
Val. Accuracy | Params.. M | Eval Time. s || Val. Accuracy | Params., | Eval Time, s || Val. Accuracy | Params.. | Eval Time, s

Conv, 4 layers. baseline 99.42 0.1 0.7008 73.18 0.1 1.8321 42.29 0.12 1.5994
KANConv. 4 lavers 99.00 349 2.6401 52.08 3.49 3.7972 21.78 3.52 4.0262
FastKANConv. 4 layers 97.65 349 1.5999 64.95 3.49 2.3716 34.32 3.52 2.7457
KALNConv, 4 layers 84.85 1.94 1.7205 10.28 1.94 3.0527 5.97 1.97 3.0919
KACNConv, 4 layers 97.62 392 1.6710 52.01 3.92 2.3972 23.17 0.42 26522
KAGNConv, 4 layers 99.99 0.49 1.7253 63.84 0.49 2.2570 47.36 1.97 2.3399
WavKANConv, 4 layers 99.23 0.95 74622 “ 73.63 0.95 11.2276 41.50 0.98 114744
Conv. 8 layers. baseline 99.63 1.14 1.2061 || 83.05 1.14 1.8258 57.52 1.19 1.8265
KANConv, 8 layers 99.37 40.7 4.2011 74.66 40.7 5.4858 36.18 40.74 3.7067
FastKANConv. 8 layers 99.49 40.7 2.1633 “ 74.66 40.7 5.4858 43.32 40.74 27771
KALNConv, & layers 49.97 22.61 1.7815 || 15.97 22.61 2.7348 1.74 22.65 2.6863
KACNConv, 8 layers 99.32 18.09 1.6973 62.14 18.09 2.3459 25.01 18.14 2.3826
KAGNConv, 8 layers 99.68 22.61 2.2402 H 84.14 2261 25849 59.27 22.66 2.6460
WavKANConv, 8 layers 99.57 10.73 591734 || 85.37 10.73 28.0385 5543 10.78 30.5438

Table 1: Results on MNIST, CIFAR10, and CIFAR100 datasets

» Slim: 16, 32, 64, 128, 256, 256, 512, 512

» Wide: 32, 64, 128, 256, 512, 512, 1024, 1024

[loBTOpEHME 3KCNepUMeHTa

Q Search runs

< Name (8 visualized)
@® @ WavKAN Ir=1e-4
® @ KALNIr=1e-4

@ @ KACN Demo Ir=1e-4
® FastKAN Ir=1e-4

@® @ KAGN Ir=1e-4

@ @ KACN Ir=1e-5

@ KACN Ir=le-2
< @ KACN Ir=1e-4
@® @ KANIr=le-4

® @ Vanillalr=1e-4

v accuracy 2

accuracy/val
-4@ = KALNIr=le-4 — KACN Demo (r=le-4 FastKAN Ir=1e-4
llr=le-4 — KACNIr=le-5 = KANIr=le-4 = Vanillair=le-4

— WavKAN |

— KA

0.8
0.6
0.4
0.2 Step
0 20 40 60 80 100 120 140
it v loss 2

loss/val

— WavKAN Ir=1e-4@ =— KALNIr=le-4 — KACN Demo lr=1le-4 FastKAN Ir=1e-4

= KAGN & 4 = KACNIr=le-5 = KANIr=le-4 = Vanillair=le-4
—
2
15
1
0.5
SEn
-]
0 20 40 60 80 100 120 140

— WavKANIr=1e-4@ — KALNIr=le-4 - KACN Demo lr=1le-4
= KAGN Ir=1e-4

— WavKAN Ir=1e-4@ =— KALNIr=le-4 — KACN Demo ir=le-4

0.5

accuracy/train

FastKAN Ir=1e-4
— KACN Ir=1e-5 = KANIr=le-4 = Vanillair=le-4

— KAGN Ir=1e-4

—_—

20

Step

40 60 80 100 120 140

loss/train

FastKAN Ir=1e-4
= KACN Ir=1e-5 = KANIr=le-4 = Vanillair=1e-4

40 60 80 100 120 140

[lanbHeuwee nccnegoBaHue

1) Anrpeung nutob3opa:
https://docs.qgooqgle.com/document/d/1BmdW4PVTmEMS5WA25ypagXOw
JL_42EFL 2BYIEtCww5f4/edit?tab=t.0 (done!) -> EASY

2) nNOBTOPEHME 3KCrepuMMeHToB (proccessing...) -> MEDIUM

3) wumnnemeHTauus KAN Ha c++ (ending...) -> VERY HARD

4) dopmynuposka npobnem (done!) -> EASY

https://docs.google.com/document/d/1BmdW4PVTmEM5WA25ypgqXOwJL_42EFL2BYlEtCww5f4/edit?tab=t.0
https://docs.google.com/document/d/1BmdW4PVTmEM5WA25ypgqXOwJL_42EFL2BYlEtCww5f4/edit?tab=t.0

Anrpeng nutob3opa

KAN not Work: Investigating the Applicability of Kolmogorov-Arnold Networks
in Computer Vision

Yueyang Cang'* Yuhang Liu'* Shi Li'*

'Tsinghua University, Beijing, China

cangyy23@mails.tsinghua.edu.cn, yh-liu23@mails.tsinghua.edu.cn, shilits@tsinghua.edu.cn

KOLMOGOROV-ARNOLD CONVOLUTIONS: DESIGN PRINCIPLES
AND EMPIRICAL STUDIES

A PREPRINT

Ivan Drokin
Deep Learning Researcher
Seath the Scaleless Research Group
ivan.s.drokin@gmail.com

[loBTOpEHME 3KCNEpPUMEHTA

Task Model Replacement Accuracy / mloU (%)
MobileNet Baseline 61.14
Tinage Classifeation MobileNet KAN (MLP replaced) 60.98
MobileNet First Layer CKAN 58.27
MobileNet Last Layer CKAN 58.64
MobileNet two CKANSs 57.46
Semantic Segmentation et .Baselme 03.28
UNet CKAN (Final CNN replaced) 59.13

Table 1. Performance Comparison of Baseline Models with KAN and CKAN on CIFAR-100 and PASCAL VOC2012.

Model First Layer Second Layer Final Layer
CNN+MLP CNN (3—32, 3x3) CNN (32—64, 3x3) | MLP
CNN+CKAN+MLP | CKAN (3—32, 3x3) | CNN (32—64, 3x3) | MLP
CNN+KAN CNN (3—32, 3x3) CNN (32—64, 3x3) | KAN
Table 2. Experi tal Model Configurations. The baseline model (CNN+MLP) serves as a control for comparison with the CKAN and

KAN-modified models.

Model 20% 40% 60% 80% 100%
CNN+MLP 62.31% | 67.26% | 69.93% | 71.33% | 71.96%
CKAN+CNN+MLP | 61.82% | 67.05% | 69.03% | 70.91% | 71.88%
CNN+KAN 64.02% | 68.15% | 70.41% | 72.13% | 72.58%

Table 3. Performance of Different Models on CIFAR-10 with Varying Dataset Sizes. Each column shows the accuracy (%) of each
model as the dataset size increases from 20% to 100%.

Model 10% 20% 30% 40% 50%
CNN+MLP 69.13% | 67.93% | 65.38% | 63.88% | 62.87%
CKAN+CNN+MLP | 69.59% | 66.73% | 64.19% | 62.56% | 58.43%
CNN+KAN 69.95% | 67.81% | 64.33% | 62.84% | 59.20%

Table 4. Performance of Different Models with Increasing Label Noise. Each column represents the accuracy (%) as the label noise
increases from 10% to 50%.

[loBTOpEHME 3KCNEpPUMEHTA

By Yad
~ ™ M)

/\
1-p
N~

ImnnemeHTauuma Ha c++

1) CUDA KERNELS: CUDA C++ Programming Guide

S8 smartengines’

2) SE craft torch
3) Ivan Drokin implenentation & torch-conv-kan *

def forward(self, x):
Process each layer usi
grid = self.grid.to(x.device
Move the input tensor to t

Perform the base linear transformatit

base_output = F.linear(self.base_activation(x), self.base_weight)
X_uns = X.unsqueeze(-1) # Expand dimensions for spline operat
Compute the basis for the line usi intervals and input

bases ((x_uns >= grid[:, :-1]) & (x_uns < grid[:, 1:])).to(x.dty

Compute the spline basis over multiple o
for k in range(1, self.spline_order + 1):
left_intervals = grid[:, :-(k + 1)]
right_intervals = grid[:, k:-1]
delta = torch.where(right_intervals == left_intervals, torch.ones_like(right_intervals),
right_intervals - left_intervals)
bases = ((x_uns - left_intervals) / delta * bases[:, :, :-1])
((grid[:, k + 1:] - x_uns) / (grid[:, k + 1:] - grid[: :(-k)]) * bases[:, :, 1:])
bases = bases.contiguous()

Compute the spline transformatit ind combine it with the e transformati

spline_output = F.linear(bases.view(x.size(@), -1), self.spline_weight.view(self.spline_weight.size(@), -1))

Ap / layer yrmalization and PRelLU activation to the combine

self.prelu(self.layer_norm(base_output + spline_output))

dopmyrnmnposka npobnem

1)
2)
3)

Monbop pnataceta
Beibop onTumMmnsaumnm
NmnnemeHTauus

True Positive Rate

Receiver Operating Characteristic (ROC) Curves

1.0 1

0.8

0.6

0.4

0.2 1

0.0 A

7 — Class 0 ROC curve (AUC = 1.00)

s —— Class 1 ROC curve (AUC = 1.00)

Sead —— Class 2 ROC curve (AUC = 1.00)

7 —— Class 3 ROC curve (AUC = 1.00)

et —— Class 4 ROC curve (AUC = 1.00)

e —— Class 5 ROC curve (AUC = 1.00)

o —— Class 6 ROC curve (AUC = 1.00)
2 —— Class 7 ROC curve (AUC = 1.00)

- Class 8 ROC curve (AUC = 1.00)
—— Class 9 ROC curve (AUC = 1.00)
—— Class 10 ROC curve (AUC = 1.00)
—— Class 11 ROC curve (AUC = 1.00)
—— Class 12 ROC curve (AUC = 1.00)
—— Class 13 ROC curve (AUC = 1.00)
—— Class 14 ROC curve (AUC = 1.00)

0.2

0.4

0.6

False Positive Rate

0.8

10

