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This presentation explores (Lo, L1)-smooth optimization, a generalization of traditional
smoothness for functions with sparse or structured gradients. Topics include:

e Definition of (Lo, L1)-smoothness and its implications.
e Key algorithms, such as Sign-SGD and its variants.
® Theoretical results under heavy-tailed (HT) noise.

® Novel theoretical bounds for the methods under (Lo, L1)-assumption.
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Abstract

In Machine Learning, the non-smoothness of optimization problems, the high cost of
communicating gradients between workers, and severely corrupted data during training
necessitate generalized optimization approaches. This paper explores the efficacy of
sign-based methods, which address slow transmission by communicating only the sign of
each minibatch stochastic gradient. We investigate these methods within (Lo, L1)-smooth
problems, which encompass a wider range of problems than the L-smoothness assumption.
Furthermore, under the assumptions above, we investigate techniques to handle
heavy-tailed noise, defined as noise with bounded x-th moment « € (1,2]. This includes
the use of SignSGD with Majority Voting in the case of symmetric noise. We then attempt
to extend the findings to convex cases using error feedback.
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Definition of (Lo, L1)-Smoothness

A function f : R = R is (Lo, L1)-smooth if, for all x,y € RY, its gradient satisfies:
[VE(x) = VI < (Lo + Li[[VF()]]) [Ix = ¥l

where:
® [y > 0: Base Lipschitz constant.
® /; > 0: Gradient-dependent smoothness factor.
® [x,y]: Line segment between x and y.

This captures non-uniform gradient behavior in sparse or noisy optimization.
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Examples of (L, L1)-Smooth Functions

The following functions illustrate (Lo, L1)-smoothness:

e Let f(x) = ||x||?", where n is a positive integer. Then, f(x) is convex and
(2n,2n — 1)-smooth. Moreover, f(x) is not L-smooth for n > 2 and any L > 0.

* f(x) =log (1+exp(—a'x)), where a € RY is some vector. It is known that this
function is L-smooth and convex with L = ||a||?. However, one can show that f is also
(Lo, L1)-smooth with Ly =0 and Ly = ||a]|. For ||a|| > 1, both Ly and L; are much
smaller than L.

These are relevant to compressed sensing and machine learning.
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Sign-SGD Algorithm

Algorithm 1 SignSGD

1

Input: Starting point ' € R?, number of iterations 7T,

stepsizes {7k i,
1. fork=1,...,T do
2:  Sample £* and compute estimate g¥ = V f (2%, £F);
3:  Set Pt =2k — 4 - sign(gF);
4: end for
Output: uniformly random point from {z*,..., 27} .

6/21



Sign-SGD-batching

Algorithm 2 minibatch-SignSGD

Input: Starting point ! € R, number of iterations T,
stepsizes {7k }}_,, batchsizes {B}1_,.
1: fork=1,. T do
2:  Sample {fk *‘1 and compute gradient estimate
gb =30 VIE ) By
3: Setaftl = 2F — 4, - sign(gF);
4: end for
Output: uniformly random point from {z!,... 27} .
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Sign-SGD Momentum Algorithm

Algorithm 4 M-SignSGD

Input: Starting point z!l € RY, number of iterations K,
stepsizes {7yx}}_,, momentums {3 }]_,.
I: fork=1,....T do
2:  Sample £* and compute estimate g* = V f(z*, £F);
3:  Compute m* = Bpm* =1 + (1 — Br)g";
4
5:

Set zF+1 = 2% — ~, - sign(mF);
end for
Output: uniformly random point from {z',... z7}.
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HT Noise Definition

The unbiased estimate V£ (x,&) has bounded x-th moment x € (1, 2] for each coordinate,
ie., Vx € RY:

* E[Vf(x,&)] = VF(x),
® E¢[|[VF(x,€)i — VF(x)i|"] <oF,i€ld,

where @ = [01,...,04| are non-negative constants. If k = 2, then the noise is called a
bounded variance.
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Assumption (Lower Bound)
The function f is lower bounded: f(x) > f* > —oo, Vx € RY.

Assumption (Smoothness)

The function f is differentiable and (Lo, L1)-smooth:

IVF(x) = VF(y)ll < (Lo + Li[[VF(u)l]) Ix =y

Assumption (Heavy-Tailed Noise)

The gradient estimate Vf(x, &) is unbiased with bounded k-th moments:
* Ec[VF(x,8)] = VF(x),
® Ec[|VF(x,8)i — VI(x)il"] <oF,i=1,...,d,

where k € (1,2], o; > 0.
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(Symmetric (Lo, L1)-smoothness) Function f : RY — R is asymmetrically (Lo, L1)-smooth,
i.e., for all x,y € R?, it holds

IVF(x) = VE(y)ll2 < (Lo + Ll|VF(y)ll2) exp(Lillx — yl[2)[[x — yll2- (1)
Moreover, it implies

Lo+ L1]|VF(x)|l2
2

Fly) < )+ (VF(x),y —x) + exp(Liflx = yll2)Ix = yll3. ()
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Lemma (HT Batching Lemma)

Let k € (1,2], and X1, ...,Xg € R? be a martingale difference sequence (MDS), i.e.,

E[X;|Xi_1,...,X1] =0 for all i € 1, B. If all variables X; have bounded x—th moment, i.e.,

E[||Xi|l5] < 400, then the following bound holds true

1 B
5 2%

K

B
2 K
E < B“ZIE[”X'Hﬂ

2

(3)
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Theorem (HP complexity for minibatch-LOL1-SignSGD)

Consider lower-bounded (L0, L1)-smooth function f and HT gradient estimates. Then Alg.
minibatch-SignSGD requires the sample complexity N to achieve % Zszl [VE(x¥)L <e
with probability at least 1 — § for:

Optimal tuning. /In case ¢ > -8L% we use stepsize
Liv/d

. 6/|c K—1
= W = 80Lod~y log(l/s) < &/2 and batchsize By = max {1, <1 H Hl) ' }

&

1/5)d> 711, \ 71
o 8o NZQ(AlLllog(/a)w [1+<Haul> D
Llﬂ € €

8Lo [ Ailglog(Y/s)d 1811} 71
TS Lve ""O<52[1+<5> ]) )

13
T=0 <A1L1|og5d2) . The total number of oracle calls is:




Proof Scketch

Theorem (HP complexity for minibatch-LOL1-SignSGD proof sketch)

® (Consider the k-th step and use the Lemma.

o After summing T steps, introduce the following terms ¢y = % e[-1,1],

Vi = E[pk|x¥] and Dy := —yi(dx — i) VF(x¥)||l1. Dk is a martingale difference
sequence.

® Applying Measure Concentration Lemma to MSD we derive the bound for all A > 0
with probability at least 1 — §.

® use norm relation and (Lo, L1)-smoothness to estimate maximum gradient norm for all
ke2, T+1:

o We take vy < m to obtain the estimate for ||V f(x¥)|1/Vd < ...

® We estimate each term v ||V f(x¥)||1 using Markov's inequality followed by Jensen's
inequality

We put this bound in telescopic sum and obtain our bound.
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Theorem (HP complexity for momentum-L0OL1-SignSGD)

Consider lower-bounded (L0, L1)-smooth function f and HT gradient estimates. Then Alg.

minibatch-SignSGD requires the sample complexity N to achieve + ST VA <e
with probability at least 1 — § for:

Optimal tuning. /n progress ...
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Proof Scketch

Theorem (HP complexity for minibatch-LOL1-SignSGD proof sketch)

e (Consider the k-th step and use the Lemma.

e After summing T steps, introduce the terms ek := mk — Vf(x*) and
0% := gk — Vf(x¥) and note that {6;} is a martingale difference sequence.

® use norm relation and (Lo, L1)-smoothness to estimate maximum gradient norm for all
ke2, T+1:

e Applying Measure Concentration Lemma and HT Batching Lemma to MSD we derive
the bound for the expected value with probability at least 1 — §.

o We finally obtain that components of the telescopic sum split to Ly and Li-dependent
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Luss and accuracy
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Plans

These are the plans for the time we have left:
® QObtain the optimal tuning convergence bound for M-SignSGD and finish the proof.
® Modify the proof of SingSGD with minibatch to obtain the bound for
MajorityVote-SignSGD.
® Validate theoretical findings with numerical experiments.
e (Optional) Explore the changing parameters.
¢ (Optional) Consider the methods under the convexity assumption.

18/21



Key Articles for Research

Topic Title Year Authors Paper Summary

Key article 1 Sign  Operator 2025 Kornilov et al. arXiv  Proofs for heavy-
for Coping with tailed noise
Heavy-Tailed
Noise

Key article 2 signSGD: 2018 J. Bernstein et al.  PMLR 3  Sign-based
Compressed methods
Optimisation
for Non-Convex
Problems

Key article 3 Methods for 2024 Gorbunov et al. arXiv. New conver-
Convex (LO,L1)- gence  guaran-
Smooth Op- tees for existing
timization: methods
Clipping, Ac-
celeration, and

19/21


https://arxiv.org/abs/2502.07923
https://proceedings.mlr.press/v80/bernstein18a.html
https://arxiv.org/abs/2409.14989

Additional Papers for Methods and Proofs (Part 1)

Topic

Title Year

Authors

Paper

Summary

Additional theory

Additional theory

Robustnes2022
to Un-
bounded
Smooth-
ness of
Gener-
alized
SignSGD
Error
Feed-
back
Fixes
SignSGD
and
other

2019

M. Crawshaw et al.

Karimireddy et al.

Curran Associates

PMLR

Lo, L1SignSG

Check
for
convex
case

20/21


https://proceedings.neurips.cc/paper_files/paper/2022/file/40924475a9bf768bdac3725e67745283-Paper-Conference.pdf
https://proceedings.mlr.press/v97/karimireddy19a.html

Additional Papers for Methods and Proofs (Part 2)

Topic Title Year Authors Paper Summary
Proofs From Gradient 2024 Hubler et al. arXiv Heavy  Tailed
Clipping to SGD

Normalization
for Heavy Tailed

SGD

Additional theory Why gradient 2020 Zhangetal. arXiv  Intro to (LO,L1)-
clipping  accel- smoothness as-
erates training: sump.

A theoretical
justification for
adaptivity

21/21


https://arxiv.org/abs/2410.13849
https://arxiv.org/abs/1905.11881

