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Overview

This presentation explores (L0, L1)-smooth optimization, a generalization of traditional
smoothness for functions with sparse or structured gradients. Topics include:

• Definition of (L0, L1)-smoothness and its implications.

• Key algorithms, such as Sign-SGD and its variants.

• Theoretical results under heavy-tailed (HT) noise.

• Novel theoretical bounds for the methods under (L0, L1)-assumption.
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Abstract

In Machine Learning, the non-smoothness of optimization problems, the high cost of
communicating gradients between workers, and severely corrupted data during training
necessitate generalized optimization approaches. This paper explores the efficacy of
sign-based methods, which address slow transmission by communicating only the sign of
each minibatch stochastic gradient. We investigate these methods within (L0, L1)-smooth
problems, which encompass a wider range of problems than the L-smoothness assumption.
Furthermore, under the assumptions above, we investigate techniques to handle
heavy-tailed noise, defined as noise with bounded κ-th moment κ ∈ (1, 2]. This includes
the use of SignSGD with Majority Voting in the case of symmetric noise. We then attempt
to extend the findings to convex cases using error feedback.
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Definition of (L0, L1)-Smoothness

A function f : Rd → R is (L0, L1)-smooth if, for all x , y ∈ Rd , its gradient satisfies:

∥∇f (x)−∇f (y)∥ ≤ (L0 + L1∥∇f (u)∥) ∥x − y∥

where:

• L0 ≥ 0: Base Lipschitz constant.

• L1 ≥ 0: Gradient-dependent smoothness factor.

• [x , y ]: Line segment between x and y .

This captures non-uniform gradient behavior in sparse or noisy optimization.
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Examples of (L0, L1)-Smooth Functions

The following functions illustrate (L0, L1)-smoothness:

• Let f (x) = ∥x∥2n, where n is a positive integer. Then, f (x) is convex and
(2n, 2n − 1)-smooth. Moreover, f (x) is not L-smooth for n ≥ 2 and any L ≥ 0.

• f (x) = log
(
1 + exp(−a⊤x)

)
, where a ∈ Rd is some vector. It is known that this

function is L-smooth and convex with L = ∥a∥2. However, one can show that f is also
(L0, L1)-smooth with L0 = 0 and L1 = ∥a∥. For ∥a∥ ≫ 1, both L0 and L1 are much
smaller than L.

These are relevant to compressed sensing and machine learning.
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Sign-SGD Algorithm
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Sign-SGD-batching

7 / 21



Sign-SGD Momentum Algorithm
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HT Noise Definition

The unbiased estimate ∇f (x , ξ) has bounded κ-th moment κ ∈ (1, 2] for each coordinate,
i.e., ∀x ∈ Rd :

• Eξ[∇f (x , ξ)] = ∇f (x),

• Eξ[|∇f (x , ξ)i −∇f (x)i |κ] ≤ σκi , i ∈ 1, d ,

where σ⃗ = [σ1, . . . , σd ] are non-negative constants. If κ = 2, then the noise is called a
bounded variance.
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Assumptions

Assumption (Lower Bound)

The function f is lower bounded: f (x) ≥ f ∗ > −∞, ∀x ∈ Rd .

Assumption (Smoothness)

The function f is differentiable and (L0, L1)-smooth:

∥∇f (x)−∇f (y)∥ ≤ (L0 + L1∥∇f (u)∥) ∥x − y∥

Assumption (Heavy-Tailed Noise)

The gradient estimate ∇f (x , ξ) is unbiased with bounded κ-th moments:

• Eξ[∇f (x , ξ)] = ∇f (x),

• Eξ[|∇f (x , ξ)i −∇f (x)i |κ] ≤ σκi , i = 1, . . . , d,

where κ ∈ (1, 2], σi ≥ 0.
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Lemma

Lemma

(Symmetric (L0, L1)-smoothness) Function f : Rd → R is asymmetrically (L0, L1)-smooth,
i.e., for all x , y ∈ Rd , it holds

∥∇f (x)−∇f (y)∥2 ≤ (L0 + L1∥∇f (y)∥2) exp(L1∥x − y∥2)∥x − y∥2. (1)

Moreover, it implies

f (y) ≤ f (x) + ⟨∇f (x), y − x⟩+ L0 + L1∥∇f (x)∥2
2

exp(L1∥x − y∥2)∥x − y∥22. (2)
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Lemma

Lemma (HT Batching Lemma)

Let κ ∈ (1, 2], and X1, . . . ,XB ∈ Rd be a martingale difference sequence (MDS), i.e.,
E[Xi |Xi−1, . . . ,X1] = 0 for all i ∈ 1,B. If all variables Xi have bounded κ−th moment, i.e.,
E[∥Xi∥κ2 ] < +∞, then the following bound holds true

E

[∣∣∣∣∣
∣∣∣∣∣ 1B

B∑
i=1

Xi

∣∣∣∣∣
∣∣∣∣∣
κ

2

]
≤ 2

Bκ

B∑
i=1

E[∥Xi∥κ2 ]. (3)
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Theorem (HP complexity for minibatch-L0L1-SignSGD)

Consider lower-bounded (L0, L1)-smooth function f and HT gradient estimates. Then Alg.
minibatch-SignSGD requires the sample complexity N to achieve 1

T

∑T
k=1 ∥∇f (xk)∥1 ≤ ε

with probability at least 1− δ for:
Optimal tuning. In case ε ≥ 8L0

L1
√
d
, we use stepsize

γ = 1
48L1d log 1

δ

√
d
⇒ 80L0dγ log(1/δ) ≤ ε/2 and batchsize Bk ≡ max

{
1,
(
16∥σ⃗∥1

ε

) κ
κ−1

}
.

T = O

(
∆1L1 log

1
δ
d

3
2

ε

)
. The total number of oracle calls is:

ε ≥ 8L0

L1
√
d

⇒ N = O

(
∆1L1 log(1/δ)d

3
2

ε

[
1 +

(
∥σ⃗∥1
ε

) κ
κ−1

])
,

ε <
8L0

L1
√
d

⇒ N = O

(
∆1L0 log(1/δ)d

ε2

[
1 +

(
∥σ⃗∥1
ε

) κ
κ−1

])
. (4)
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Proof Scketch

Theorem (HP complexity for minibatch-L0L1-SignSGD proof sketch)

• Consider the k-th step and use the Lemma.

• After summing T steps, introduce the following terms ϕk := ⟨∇f (xk ),sign(gk )⟩
∥∇f (xk )∥1

∈ [−1, 1],

ψk := E[ϕk |xk ] and Dk := −γk(ϕk − ψk)∥∇f (xk)∥1. Dk is a martingale difference
sequence.

• Applying Measure Concentration Lemma to MSD we derive the bound for all λ > 0
with probability at least 1− δ.

• use norm relation and (L0, L1)-smoothness to estimate maximum gradient norm for all
k ∈ 2,T + 1 :

• We take γk ≤ 1
48L1d log 1

δ

√
d
to obtain the estimate for ∥∇f (xk)∥1/

√
d ≤ ...

• We estimate each term ψk∥∇f (xk)∥1 using Markov’s inequality followed by Jensen’s
inequality

• We put this bound in telescopic sum and obtain our bound.
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Theorem (HP complexity for momentum-L0L1-SignSGD)

Consider lower-bounded (L0, L1)-smooth function f and HT gradient estimates. Then Alg.
minibatch-SignSGD requires the sample complexity N to achieve 1

T

∑T
k=1 ∥∇f (xk)∥1 ≤ ε

with probability at least 1− δ for:
Optimal tuning. In progress ...
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Proof Scketch

Theorem (HP complexity for minibatch-L0L1-SignSGD proof sketch)

• Consider the k-th step and use the Lemma.

• After summing T steps, introduce the terms ϵk := mk −∇f (xk) and
θk := gk −∇f (xk) and note that {θi} is a martingale difference sequence.

• use norm relation and (L0, L1)-smoothness to estimate maximum gradient norm for all
k ∈ 2,T + 1 :

• Applying Measure Concentration Lemma and HT Batching Lemma to MSD we derive
the bound for the expected value with probability at least 1− δ.

• We finally obtain that components of the telescopic sum split to L0 and L1-dependent
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Plans

These are the plans for the time we have left:

• Obtain the optimal tuning convergence bound for M-SignSGD and finish the proof.

• Modify the proof of SingSGD with minibatch to obtain the bound for
MajorityVote-SignSGD.

• Validate theoretical findings with numerical experiments.

• (Optional) Explore the changing parameters.

• (Optional) Consider the methods under the convexity assumption.
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Topic Title Year Authors Paper Summary

Key article 1 Sign Operator
for Coping with
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Noise

2025 Kornilov et al. arXiv Proofs for heavy-
tailed noise
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Optimisation
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2018 J. Bernstein et al. PMLR 3 Sign-based
methods
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Clipping, Ac-
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Adaptivity

2024 Gorbunov et al. arXiv New conver-
gence guaran-
tees for existing
methods
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SignSGD
and
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Gra-
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pres-
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2019 Karimireddy et al. PMLR Check
for
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SGD
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SGD
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