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Problem Statement

Neural networks achieve higher accuracy with larger datasets.

However, computational resources limit training possibilities.

Key question: When does additional data stop reshaping the loss
landscape?
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Proposed Method

Analyze loss landscape via Hessian eigenvectors.

Project high-dimensional parameter space onto lower-dimensional
space.

Utilize Monte-Carlo methods to approximate landscape changes.
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Main Idea

Hessian-based projections identify primary curvature directions.

Calculate a ∆-function to quantify changes when increasing dataset
size:

∆k =

∫
(Lk(w)− Lk−1(w))2p(w)dw

Identify the threshold at which further data does not significantly
alter landscape.
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Neural Networks Loss Landscape Convergence in Different
Low-Dimensional Spaces

Goal: Measure how the loss function changes as the training set size
grows:

∆k = Ep(w)

(
Lk(w)− Lk−1(w)

)2
.

Method:

Monte Carlo: Generate points near the minimum according to p(w)
and average the differences.
Hessian Eigenvectors: Use directions with the largest eigenvalues to
focus on key curvature components.

Loss function

∆k function
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Experiment Results

Experiments conducted on MNIST and Fashion-MNIST datasets.

Low-dimensional visualization clearly illustrates stabilization.

Verified theoretical bounds empirically.
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Practical Implications

Enables identification of minimal viable dataset size.

Reduces computational cost significantly.

Provides guidelines for efficient data collection.
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