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This presentation explores (Lo, L1)-smooth optimization, a generalization of traditional
smoothness for functions with sparse or structured gradients. Topics include:

® Definition of (Lo, L1)-smoothness and its implications.
e Key algorithms, such as Sign-SGD and its variants.

® Theoretical results under heavy-tailed (HT) noise.
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Abstract

In Machine Learning, the non-smoothness of optimization problems, the high cost of
communicating gradients between workers, and severely corrupted data during training
necessitate generalized optimization approaches. This paper explores the efficacy of
sign-based methods, which address slow transmission by communicating only the sign of
each minibatch stochastic gradient. We investigate these methods within (Lo, L1)-smooth
problems, which encompass a wider range of problems than the L-smoothness
assumption. Furthermore, under the assumptions above, we investigate techniques to
handle heavy-tailed noise, defined as noise with bounded x-th moment x € (1,2]. This
includes the use of SignSGD with Majority Voting in the case of symmetric noise. We
then attempt to extend the findings to convex cases using error feedback.
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Definition of (Lo, L1)-Smoothness

A function f : RY — R is (Lo, L1)-smooth if, for all x,y € RY, its gradient satisfies:

IVF(x) = V)l < (Lo +L e HVf(U)H> [Ix =yl
ue|x,y
where:
® [y > 0: Base Lipschitz constant.
® [, > 0: Gradient-dependent smoothness factor.
® [x,y]: Line segment between x and y.

This captures non-uniform gradient behavior in sparse or noisy optimization.
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Examples of (L, L1)-Smooth Functions

The following functions illustrate (Lo, L1)-smoothness:

e Let f(x) = ||x||?", where n is a positive integer. Then, f(x) is convex and
(2n,2n — 1)-smooth. Moreover, f(x) is not L-smooth for n > 2 and any L > 0.

 f(x) = log (1 +exp(—a'x)), where a €7 is some vector. It is known that this
function is L-smooth and convex with L = ||a||?. However, one can show that f is
also (Lo, L1)-smooth with Ly =0 and L; = ||a||. For ||a|| > 1, both Lo and L; are

much smaller than L.
These are relevant to compressed sensing and machine learning.
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Sign-SGD Algorithm

Algorithm 1 SignSGD

1

Input: Starting point ' € R?, number of iterations 7T,

stepsizes {7k i,
1. fork=1,...,T do
2:  Sample £* and compute estimate g¥ = V f (2%, £F);
3:  Set Pt =2k — 4 - sign(gF);
4: end for
Output: uniformly random point from {z*,..., 27} .
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Sign-SGD-batching

Algorithm 2 minibatch-SignSGD

Input: Starting point ! € R, number of iterations T,
stepsizes {7k }}_,, batchsizes {B}1_,.
1: fork=1,. T do
2:  Sample {fk *‘1 and compute gradient estimate
gb =30 VIE ) By
3: Setaftl = 2F — 4, - sign(gF);
4: end for
Output: uniformly random point from {z!,... 27} .
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Sign-SGD Momentum Algorithm

Algorithm 4 M-SignSGD

Input: Starting point z!l € RY, number of iterations K,
stepsizes {7yx}}_,, momentums {3 }]_,.
I: fork=1,....T do
2:  Sample £* and compute estimate g* = V f(z*, £F);
3:  Compute m* = Bpm* =1 + (1 — Br)g";
4
5:

Set zF+1 = 2% — ~, - sign(mF);
end for
Output: uniformly random point from {z',... z7}.
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Sign-SGD majority vote

Algorithm 3 MajorityVote-SignSGD
0

Input: Starting point z° € RY, number of iterations T,
stepsizes {7x }1_,. batchsizes { My }]_,.
cfork=1,..., T do
Sample {&k "1 and compute gradient estimate
g" = Sl sign(V/ (2, €));
3:  Set ;r‘t““ — ¥ — ~; - sign (g )
4: end for
Output: uniformly random point from {z!,... 27} .

!\:jn—t
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HT Noise Definition

The unbiased estimate Vf(x, &) has bounded x-th moment x € (1, 2] for each coordinate,
ie., Vx €9

* E[Vf(x,&)] = VF(x),
® E¢[|[VF(x,€)i — VF(x)i|"] <oF,i€ld,

where & = [01,...,04] are non-negative constants. If k = 2, then the noise is called a
bounded variance.
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Assumptions

Assumption (Lower Bound)
The function f is lower bounded: f(x) > f* > —oo, Vx € RY.

Assumption (Smoothness)
The function f is differentiable and (Lo, L1)-smooth:

u€x.y]

IVE(x) = VI < (Lo + L1 sup HVf(U)H> [Ix =yl

Assumption (Heavy-Tailed Noise)

The gradient estimate Vf(x,&) is unbiased with bounded k-th moments:
* E¢[VF(x,8)] = Vf(x),
® E¢[|VFf(x,8)i — VI(x)i|"] <of,i=1,...,d,

where k € (1,2], o; > 0.
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Theorem for Sign-SGD-minibatch

Theorem 1 (HP complexity for minibatch-SignSGD).
Consider lower-bounded L-smooth function f (As. I, 2)
and HT gradient estimates (As. 3). Then Alg. 2 requires the
sample complexity N to achieve Zi-:l IVf(zF)| < e
with probability at least 1 — ¢ for:

arbitrary tuning: T, . = %, B, = max{l, ByT'}:

2
N—oO (Bo(Al/v'n:rLd”fo)4 Ll (H&Hl) ) ,
5 By €

optimal tuning: T = O(AILW) R ,/SLAJW(‘B,c =

max {l, (—16”55”1) = } :

7 =
voo (Al ukat (191))

g2 £

where Ay = f(x') — f*, Ly = Llog(1/s).
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Theorem 2 (HP complexity for MajorityVote-SignSGD).
Consider lower-bounded L-smooth function f (As. 1, 2)
and the gradient estimates corrupted by unimodal and sym-
metric HT noise (As. 3). Then Alg. 3 requires the sample
complexity N to achieve %E{:l VF(xF) < & with
probability at least 1 — § for:

arbitrary tuning: T, . = ‘—. My, = max{L, MpT}:

E'l

N0 (M”(A%" + Ladyo + 170 /Vih) ) @

%) =

optimal tuning: T = O ( Ve = SLadT M, =

max {1. (8(1,;“%‘1)2} :

a2
N=oO (Aliqsd N A]f;ad (anH:JHl) ) ‘ @)

where Ay = f(a') — f*, Ls=Llog1/s, (a,)" := =t
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