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Overview

This presentation explores (L0, L1)-smooth optimization, a generalization of traditional
smoothness for functions with sparse or structured gradients. Topics include:

• Definition of (L0, L1)-smoothness and its implications.

• Key algorithms, such as Sign-SGD and its variants.

• Theoretical results under heavy-tailed (HT) noise.
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Abstract

In Machine Learning, the non-smoothness of optimization problems, the high cost of
communicating gradients between workers, and severely corrupted data during training
necessitate generalized optimization approaches. This paper explores the efficacy of
sign-based methods, which address slow transmission by communicating only the sign of
each minibatch stochastic gradient. We investigate these methods within (L0, L1)-smooth
problems, which encompass a wider range of problems than the L-smoothness
assumption. Furthermore, under the assumptions above, we investigate techniques to
handle heavy-tailed noise, defined as noise with bounded κ-th moment κ ∈ (1, 2]. This
includes the use of SignSGD with Majority Voting in the case of symmetric noise. We
then attempt to extend the findings to convex cases using error feedback.
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Definition of (L0, L1)-Smoothness

A function f : Rd → R is (L0, L1)-smooth if, for all x , y ∈ Rd , its gradient satisfies:

∥∇f (x)−∇f (y)∥ ≤

(
L0 + L1 sup

u∈[x ,y ]
∥∇f (u)∥

)
∥x − y∥

where:

• L0 ≥ 0: Base Lipschitz constant.

• L1 ≥ 0: Gradient-dependent smoothness factor.

• [x , y ]: Line segment between x and y .

This captures non-uniform gradient behavior in sparse or noisy optimization.
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Examples of (L0, L1)-Smooth Functions

The following functions illustrate (L0, L1)-smoothness:

• Let f (x) = ∥x∥2n, where n is a positive integer. Then, f (x) is convex and
(2n, 2n − 1)-smooth. Moreover, f (x) is not L-smooth for n ≥ 2 and any L ≥ 0.

• f (x) = log
(
1 + exp(−a⊤x)

)
, where a ∈d is some vector. It is known that this

function is L-smooth and convex with L = ∥a∥2. However, one can show that f is
also (L0, L1)-smooth with L0 = 0 and L1 = ∥a∥. For ∥a∥ ≫ 1, both L0 and L1 are
much smaller than L.

These are relevant to compressed sensing and machine learning.
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Sign-SGD Algorithm
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Sign-SGD-batching
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Sign-SGD Momentum Algorithm
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Sign-SGD majority vote
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HT Noise Definition

The unbiased estimate ∇f (x , ξ) has bounded κ-th moment κ ∈ (1, 2] for each coordinate,
i.e., ∀x ∈d :

• Eξ[∇f (x , ξ)] = ∇f (x),

• Eξ[|∇f (x , ξ)i −∇f (x)i |κ] ≤ σκ
i , i ∈ 1, d ,

where σ⃗ = [σ1, . . . , σd ] are non-negative constants. If κ = 2, then the noise is called a
bounded variance.
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Assumptions

Assumption (Lower Bound)

The function f is lower bounded: f (x) ≥ f ∗ > −∞, ∀x ∈ Rd .

Assumption (Smoothness)

The function f is differentiable and (L0, L1)-smooth:

∥∇f (x)−∇f (y)∥ ≤

(
L0 + L1 sup

u∈[x ,y ]
∥∇f (u)∥

)
∥x − y∥

Assumption (Heavy-Tailed Noise)

The gradient estimate ∇f (x , ξ) is unbiased with bounded κ-th moments:

• Eξ[∇f (x , ξ)] = ∇f (x),

• Eξ[|∇f (x , ξ)i −∇f (x)i |κ] ≤ σκ
i , i = 1, . . . , d,

where κ ∈ (1, 2], σi ≥ 0. 11 / 17



Theorem for Sign-SGD-minibatch
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Theorem for Sign-SGD-majority-Vote
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Key Articles for Research

Topic Title Year Authors Paper Summary

Key article 1 Sign Operator
for Coping with
Heavy-Tailed
Noise

2025 Kornilov et al. arXiv Proofs for
heavy-tailed
noise

Key article 2 signSGD:
Compressed
Optimisation
for Non-Convex
Problems

2018 J. Bernstein et al. PMLR 3 Sign-based
methods

Key article 3 Methods
for Convex
(L0,L1)-Smooth
Optimization:
Clipping, Ac-
celeration, and
Adaptivity

2024 Gorbunov et al. arXiv New conver-
gence guaran-
tees for existing
methods
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https://arxiv.org/abs/2502.07923
https://proceedings.mlr.press/v80/bernstein18a.html
https://arxiv.org/abs/2409.14989


Additional Papers for Methods and Proofs (Part 1)

Topic Title Year Authors Paper Summary

Additional theory Robustness
to Un-
bounded
Smooth-
ness of
Gener-
alized
SignSGD

2022 M. Crawshaw et al. Curran Associates L0, L1SignSGDwithMomentum

Additional theory Error
Feed-
back
Fixes
SignSGD
and
other
Gra-
dient
Com-
pres-
sion
Schemes

2019 Karimireddy et al. PMLR Check
for
convex
case
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https://proceedings.neurips.cc/paper_files/paper/2022/file/40924475a9bf768bdac3725e67745283-Paper-Conference.pdf
https://proceedings.mlr.press/v97/karimireddy19a.html


Additional Papers for Methods and Proofs (Part 2)

Topic Title Year Authors Paper Summary

Proofs From Gradient
Clipping to
Normalization
for Heavy Tailed
SGD

2024 Hubler et al. arXiv Heavy Tailed
SGD

Additional theory Why gradient
clipping accel-
erates training:
A theoretical
justification for
adaptivity

2020 Zhang et al. arXiv Intro to (L0,L1)-
smoothness as-
sump.
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https://arxiv.org/abs/2410.13849
https://arxiv.org/abs/1905.11881

