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ApxutekTtypa KAN vs MLP
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Figure 2.4: An example of how to do symbolic regression with KAN.
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Continual Learning
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OcHoBHOe yTBep)XXaeHve

Theorem 2.1 (Approximation theory, KAT). Let x = (x1,%2,- - ,%y). Suppose that a function
f(x) admits a representation

f=(Pr_10®p 20---0®P; 0 Pg)x, (2.14)

as in Eq. (2.7), where each one of the @, ; ; are (k + 1)-times continuously differentiable. Then

there exists a constant C depending on f and its representation, such that we have the following

G

approximation bound in terms of the grid size G: there exist k-th order B-spline functions ®;. j

such that for any 0 < m < k, we have the bound
1f—(®F_0®F 0.0 ®F 0 ®)x|cm < CGF1T™M (2.15)
Here we adopt the notation of C"™-norm measuring the magnitude of derivatives up to order m:

_ B
gllcm = max sup |D"g(x)]|.
Il |ﬂ|§m:pe[0,1]”‘ ( )|
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Neural scaling loss
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Figure 3.1: Compare KANs to MLPs on five toy examples. KANs can almost saturate the fastest scaling law
predicted by our theory (o = 4), while MLPs scales slowly and plateau quickly.
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Hepoctatkm KAN

X He ontummnsnposaHsl Ha GPU;

X TPUMEHUMOCTbL: TECTMPOBAUCH TOSIbKO Ha MasiopasMepHbIX
3agavax;

X MepneHHoe obyyeHue.



Y10 Y)Xe caenaHo?

v nybokoe nayyenme Back Propagation;
v MoppobHoe nayyeHmne mopynsa PyTorch;

v N3yueHne anroputmoB ctox. ontumMmnsaumm (SGD, SAGA, SVRG,
SARAH);

v N3yueHne apantmeHbix anroputmoB (AdaGrad, RMSProp, Adam,
AdamW);



Tekywie 3apaun

= AHann3 Ziming Li et al., KAN : Kolmogorov-Arnold Networks 1
9KCMEPUMEHTOB;

= CpaBHuTb ¢ MLP Ha gpyrux 3agavax;

= [1poaHanunaunpoBaTtb npumeHeHne B Al & Science.
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I'MnaHbl n uenu

= Peannzosatb KAN 1 BOCNpON3BECTUN 3KCMEPUMEHTHI,
= 3amMeHa JIMHEeNHbIX CNoeB?;
= [1pnmeHeHne B Tabular DL,;

= [1prMeHeHNe B rpadoBbIX CETAX



JaKJ/iro4deHue

- KAN’s nopoavwnu HoBbIN nogxon!
- KAN’s - nepecnekTnBHaga 3ameHa MLP;

- Byayuwime nccnegoBaHna MOryT 3HAYUTENBHO PACLUNPUTL UX
NPUMEHEHME.



Cnacun6o 3a BHUMmaHue!



