

Measure invariance under a group of transforms

E. Dzhengher

«Hard» problem of measure's theory

Does there exist any measure μ on bounded subsets of \mathbb{R}^n such that:

- $\mu([0, 1]^n) = 1$
- If A and B are congruent sets then $\mu(A) = \mu(B)$
- If $E = \bigsqcup_{k=1}^{\infty} E_k$ then $\mu(E) = \sum_{k=1}^{\infty} \mu(E_k)$?

Theorem

Such measure does not exist even in \mathbb{R}^1 .

«Easy» problem of measure's theory

Does there exist any measure μ on bounded subsets of \mathbb{R}^n such that:

- $\mu([0, 1]^n) = 1$
- If A and B are congruate sets, then $\mu(A) = \mu(B)$
- If $E = \sqcup_{k=1}^m E_k$ then $\mu(E) = \sum_{k=1}^m \mu(E_k)$?

Theorem (Banach)

The «Easy» problem of measure's theory has a solution for \mathbb{R}^1 and \mathbb{R}^2 , but it is not unique.

Theorem (Hausdorff)

The «Easy» problem of measure's theory is unsolvable for \mathbb{R}^n , $n \geq 3$.

Banach's limit

Definition

A functional $B: \ell_\infty \rightarrow \mathbb{R}$ is called *the Banach's limit* if

- $B(1) = 1$
- $B(x) \geq 0$ for any $x \geq 0$
- $B(Tx) = B(x)$ for any x where $T(x_1, x_2, x_3, \dots) = (x_2, x_3, \dots)$.

Ultrafilter

Definition

A family \mathcal{F} of subsets of a set is called a filter if

- $\emptyset \notin \mathcal{F}$
- if $B \subset A$ and $B \in \mathcal{F}$ then $A \in \mathcal{F}$
- if $A, B \in \mathcal{F}$ then $A \cap B \in \mathcal{F}$.

An inclusion-wise maximum filter is called the *ultrafilter*.

If $\bigcap_{F \in \mathcal{F}} F \neq \emptyset$ then ultrafilter is said to be *principal*.

Limit along ultrafilter

Definition

Let \mathcal{F} be a non-principal ultrafilter on \mathbb{N} .

Let (X, d) be a metric space and $x \in X$. Let $\{x_n\}: \mathbb{N} \rightarrow X$ be a bounded sequence of points. We say that x is a *\mathcal{F} -limit of x_n* , denoted as $x = \lim_{\mathcal{F}} x_n$, if for every $\varepsilon > 0$ it holds that $\{n : d(x_n, x) \leq \varepsilon\} \in \mathcal{F}$.

Construction of Banach limit on ℓ_∞ and measure on \mathbb{N}

Theorem

Let \mathcal{F} be a free ultrafilter on \mathbb{N} . Let $x = (x_n)$ be a bounded real sequence. Then the functional $\varphi: \ell_\infty \rightarrow \mathbb{R}$ defined by

$$\varphi(x) := \lim_{\mathcal{F}} \frac{x_1 + x_2 + \dots + x_n}{n}$$

is a Banach limit.

Define $\ell: 2^\mathbb{N} \rightarrow \ell_\infty$ by $\ell(A) := x$ where $x_n = 1$ if $n \in A$ and $x_n = 0$ otherwise.

Then define $\mu_B(A) := \varphi(\ell(A))$.

The measure μ_B is shift-invariant, locally finite, finitely-additive, σ -finite.

Plans

- Learn base of Banach limits in ℓ_∞ and $L_\infty(\mathbb{R})$
- Construct spaces L_p with Banach measure and obtain properties of Fourier transform in these spaces.