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Introduction

Generally, probabilistic algorithms require uniform and independent random bits. But
real-world sources of randomness very rarely, if ever, have such qualities. That is why
arises the question whether we can use real-world ”weakly random” to run probabilistic
algorithms.
The randomness extractor is a function that transforms a ”weak” random source into an
almost uniform distribution. In the 1950s, the problem of randomness extraction was first
considered by von Neumann, who wanted to extract randomness from biased random
coins. Later, the problem was generalized. In 1985 Chor and Goldreich introduced the
notion of min entropy [CG85].
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Definitions

Min entropy

Let X be a random variable. The min entropy of X , denoted by H∞(X ) is
sup{k ∈ R|∀xP[X = x ] ≤ 2−k} = inf{− log2 P[X = x ]}
If X is a distribution over {0, 1}n with H∞(X ) ≥ k then it is called an (n, k)-source

Statistical distance

Let X and Y be two distributions over domain Ω. The statistical distance between X and
Y , denoted by ∆(X ,Y ), is equal to

max
S⊂Ω

|P[X ∈ S ]− P[Y ∈ S ]| = 1

2

∑
ω∈Ω

|P[X = ω]− P[Y = ω]|

Two distributions X and Y are called ε-close if ∆(X ,Y ) ≤ ε.
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Definitions

Randomness extractor

A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k , ε)-extractor if for any (n, k)-source
X , the distribution Ext(X ,Ud) is ε-close to Um.

Why do we need extra randomness?

Lemma

Let k ≤ n − 1. ∀Ext : {0, 1}n → {0, 1}m∃(n, k)-source X such that first bit of Ext(X ) is
constant.

From this lemma, the statistical distance between Ext(X ) and Um is at least 1
2 when Ext

is deterministic.
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Bounds

The goal in constructing a good extractor is to maximize the output length m, minimize
the seed length d and minimize the error ε at the same time.
Informally speaking, (n, k)-source contains k hidden bits of information, so the extractor,
taking extra d real random bits with output length m = k + d is optimal. Existence of an
almost optimal (in this sense) extractor can be shown by probabilistic method.

Theorem

Consider ε fixed constant. ∀k ≤ n∃(k , ε)-extractor with m = k + d − O(1) and
d = log2 n + O(1).
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Bounds

In 1997 the following bounds on the seed length and output length were shown [RTS00].

Theorem

If Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-extractor, then
d ≥ log2(n − k) + 2 log2(

1
ε )− O(1) and d + k −m ≥ 2 log2

1
ε − O(1).

For the purpose of applications, of course, explicit constructions are needed. One of the
known constructions has both seed length and output length within a constant seed
factor of the optimal implicit extractor [CJLW03].

Theorem

∀α, ε > 0∀n, k ≤ n∃ explicit (k , ε)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with
d = O(log n) and m = (1− α) · k.
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Work Plan

There are many different constructions of extractors that have appeared in the recent
years. But still there is a gap not only between known lower bounds and explicit
constructions, but also a gap between known explicit and implicit constructions.
Advanced extractors are complicated and their constructions based on other
constructions. So the current goals are to study the best known constructions, try to
simplify and improve them.
Also, extractors are tied with pseudo random generators [Tre01] and list-decodable
error-correcting codes [Vad07]. So, the construction of any of these objects is often
helpful in constructing the other two.
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Questions
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