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Постановка задачи Лемма ККМ и её обобщения Идея доказательства Заключение

Задача линейного программирования

Прямая задача:

min
x∈Rn

⟨x , c⟩,

s.t. Ax ⩾ b

Двойственная задача:

max
λ∈Rm

⟨λ, c⟩,

s.t. ATλ = c ,

λ ⩾ 0

Theorem (О сильной двойственности)
Минимум x∗ прямой задачи линейного программирования существует
тогда и только тогда, когда существует максимум λ∗ двойственной
задачи, и если такие x∗ и λ∗ существуют, то x∗ = λ∗.

Свойство слабой двойственности считаем очевидным.
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Мотивация

Теорема Борсука-Улама

Симплекс-метод Лемма ККМ

Лемма Шпернера
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Лемма Кнастера-Куратовского-Мазуркевича
Theorem
Пусть ∆n – n-мерный симплекс на n + 1 вершине и {a1, . . . an+1} ⊂ Rn

множество его вершин. Назовём семейство {F1, . . . ,Fn+1} замкнутых
множеств ККМ-покрытием, если для любого множества I ⊆ [n]
выполнено conv{ai}i∈I ⊆

⋃
i∈I Fi . Тогда для любого ККМ-покрытия

выполнено
⋂n

i=1 Fi ̸= ∅.
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Лемма ККМ для многогранников

Theorem
Пусть P – d-мерный многогранник и {a1, . . . an} ⊂ Rd множество его
вершин. Назовём семейство {F1, . . . ,Fn} замкнутых множеств
ККМ-покрытием, если оно покрывает P и для любой грани T ⊆ ∂P с
набором вершин V (T ) ⊆ {a1, . . . an} выполнено T ⊆

⋃
ai∈V (T ) Fi . Тогда

для любого ККМ-покрытия и для любой точки c ∈ P найдётся такое
множество вершин S ⊆ {a1, . . . , an}, что c ∈ conv(S) и

⋂
ai∈S Fi ̸= ∅.

Здесь под гранью подразумевается грань любой размерности.
Например, для трёхмерного многогранника гранями являются
вершины, рёбра и двумерные грани.
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Основные теоремы

Theorem
Пусть 0 ̸∈ conv(A), dim cone(A) = n и c ∈ cone(A), тогда выполняется
свойство сильной двойственности.

Из этой теоремы разбором случаев будет следовать теорема о сильной
двойственности.
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Основные теоремы

Теорема ниже является следствием из Леммы ККМ для
многогранников.

Theorem (ККМ с линейными условиями)

Пусть выпуклая оболочка точек A := {a1, . . . , an} ⊂ Rd является
d-мерным многогранником. Назовём семейство {F1, . . . ,Fn+1}
замкнутых множеств ККМ-покрытием замкнутого шара Bd , если для
любой точки x ∈ ∂Bd выполнено x ∈ Fi ⇔ ⟨x , ai ⟩ = minnj=1⟨aj , x⟩.
Тогда для любого ККМ-покрытия и для любой точки c ∈ conv(A)
найдётся множество вершин S ⊆ A, что c ∈ conv(S) и

⋂
ai∈S Fi ̸= ∅.
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Цветная проекция
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Немного техники
Выше получили покрытие {F1, . . . ,Fn} замкнутыми множествами
пространства Rd−1. Рассмотрим естественный гомеоморфизм f между
(d − 1)-мерным открытым шаром Bd−1

<1 и пространством Rd−1.

Тогда покрытие (раскраска) шара определяется по правилу
x ∈ F ′

i ⇔ f −1(x) ∈ Fi .

Theorem
Раскраска выше продолжается на границу шара по правилу
x ∈ F ′

i ⇔ ⟨x , ai ⟩ = minnj=1⟨aj , x⟩.

Наконец, воспользуемся Теоремой ККМ с линейными условиями и
получим множество S и точку x̃∗ ∈

⋂
ai∈S F

′
i . Утверждается, что

обратная проекция точки x̃∗ и есть искомый минимум x∗. Точка λ∗

строится по множеству S так, чтобы
∑

ai∈S λ
∗
i ai = c . Затем несложной

проверкой и в силу слабой двойственности убеждаемся, что x∗ = λ∗.
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Проблемы и узкие места

1. Нужно расширить алгоритм для случая c ∈ conv(A).

2. Готового алгоритма для поиска множества S в Лемме ККМ для
многогранников может не существовать и он может быть
достаточно медленным.
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Сильные стороны

1. Тема довольно слабо исследована, есть пространство для
улучшений. Есть идея обобщить доказательство для выпуклого
случая. А для невыпуклого может получиться алгоритм для
поиска оптимальных условий для задач о дележе.

2. Топологические методы многочисленны и гибки.
3. Некоторые алгоритмы имеют с большой вероятностью быструю

эвристику, например алгоритм поиска трёхцветной точки в Лемме
Шпернера.
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