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Meld the approaches of two papers

e Paper 1: relatively general proofs for vanilla Sign-SGD convergence
e Paper 2: weaker proofs, but theoretical and experimental analysis of the
application to the federated learning

We want to mix it to create an algorithm to securely train LLMs on user data.
However, we will start from MNIST to test our ideas.
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Algorithm 1 SignSGD

Input: Starting point ! € R?, number of iterations 7,
stepsizes {Vk }._;.
I: fork=1,...,7T do
2:  Sample £F and compute estimate g~ = V f(x*, £F);
3:  Set "t = z* — ~; - sign(g®);
4: end for
Output: uniformly random point from {z*, ..., z*}.




Algorithm 1 Stochastic-Sign SGD with majority vote

Input: learning rate 7, current hypothesis vector w*), M workers each with an independent

gradient gﬁ,? , the 1-bit compressor ¢(-).

on server;
pull q(ggf,,)) from worker m.

push g = sign (% e q(ggﬁ))) to all the workers.

on each worker:
update w(+1) = ® — png®),

Definition 2. For any given gradient gS?, the compressor dp-sign outputs dp-sz’gn(gm ,€,0). The

i-th entry ofdp—sign(gm ,€,0) is given by
I with probability @(@)

(D).
il with probability 1 — (I)(M)

(o

dp-sign(g't) e, 8); = (15)



Assumption 1 (Lower bound). The objective function f is
lower bounded by f* > —oo, i.e., f(x) > f*, Vo € RY

Assumption 2 (Smoothness). The objective function f is
differentiable and L-smooth, i.e., for the positive constant L

IVf(@) = VIWlz < Lz - yll2, Va,y € R%

Assumption 3 (Heavy-tailed noise in gradient estimates).
The unbiased estimate V f(x, &) has bounded k-th moment
k € (1,2] for each coordinate, i.e., Vx € R9:

* E¢[V(z,8)] =V/(z),
* E[|Vf(z,8)i — VF(2):]"] < of,i€1,d,

where ¢ = [o01,...,04| are non-negative constants. If
k = 2, then the noise is called a bounded variance.



The idea for our proofs is to be borrowed from Kornilov et al.

Lemma 1 (SignSGD Convergence Lemma). Consider
lower-bounded L-smooth function f (As. 1, 2) and HT
gradient estimates (As. 4). Then Alg. 1 after T iterations

with constant stepsizes i = v achieves with probability at
least 1 — ¢ starting with A = f(z!) — f*:

2\ -
—an e < F +16Ldylog(/s) + 4]

12dHVfT(xl)Hllog(1/a). )



From China with love

Definition 3. Given a set of local datasets D provided with a notion of neighboring local datasets
Np C D x D that differ in only one data point. For a query function f : D — X, a mechanism

M : X — O to release the answer of the query is defined to be (e, 0)-locally differentially private if
for any measurable subset S C O and two neighboring local datasets (D1, Dy) € Np,

PM(f(D1)) € §) < e“P(M(f(D2)) € §) +. (21)

A key quantity in characterizing local differential privacy for many mechanisms is the sensitivity of
the query f in a given norm [,., which is defined as

Ay = . 1f(D1) = f(D2)l]r- (22)

Theorem 6. Let uy,us,--- ,upr be M known and fixed real numbers. Further define random

variables u; = dp-sign(u;,€,0),Y1 < i < M. Then there always exist a constant o such that when

. M A . M > M M
0 > 00, P(sign(q7 D opme W) 7 8ig10(37 domey i) < [(1 —22)] 2, where x = |Z'2"(;]¢1“"‘|,




This is impractical. Our goal is to condense it.

VTd'

Then by running Algorzthm with q(gw’ ) = sto-sign(V jm(w(t)) b) (termed as s10-SIGNSGD) for T
iterations, we have

Theorem 2. Suppose Assumpnoml !and are satisfied, and the learning rate is set as 1 = —=

ja—
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where 0 < ¢ < 1 is some posmve constant, p( ) is the probability that the aggregation on the
i-coordinate of the gradient is wrong during the t-th communication round, and A(M) is the

(t) lconlylf

M
solution to (1 — IL’2) al— 156. The second inequality is due to the fact that p;
[9FG PNl < A(M).
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