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Постановка задачи

Рассматриваем задачу выпуклой оптимизации:

min
x∈Rd

f (x),

где f — выпуклая и достаточно гладкая функция (например, f ∈ C 2).
Возможны дополнительные условия:
• ∥∇f (x)−∇f (y)∥ ≤ L1∥x − y∥,
• ∥∇2f (x)−∇2f (y)∥ ≤ L2∥x − y∥.

Также используются условия (L0, L1)-гладкости (см. [2]).
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Кубическая регуляризация (CRN), p = 2

Шаг метода (см. [1]):

xk+1 = argmin
s

{
⟨∇f (xk), s⟩+

1
2
s⊤∇2f (xk)s +

M

6
∥s∥3

}
.

При M ≥ L2 метод обеспечивает глобальную сходимость с числом
итераций O(ε−1/2).

Евсей Обжерин (МФТИ ФПМИ) Высшие порядки 11 марта 2025 г. 4 / 11



Методы третьего порядка (тензорный подход, [3])

Разложение Тейлора порядка 3:

Φx ,3(y) = f (x)+⟨∇f (x), y−x⟩+1
2
(y−x)⊤∇2f (x)(y−x)+

1
6
D3f (x)[y−x ]3.

Tensor-метод:

xk+1 = argmin
y

{
Φxk ,3(y) +

M

24
∥y − xk∥4

}
.
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Quasi-Newton методы и ускорение ([1])

Идея: приближённая аппроксимация гессиана

∇2f (xk) ≈ Bk =⇒ [∇2f (xk)]
−1 ≈ Hk ,

где Bk или Hk уточняются по накопленной информации. Общее

QN-обновление:
xk+1 = xk − Hk ∇f (xk).

Cubic QN: O(k−1).

Accelerated Cubic QN: O(k−2) (иногда O(k−3)).
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Шаг методов высших порядков

• CRN (p = 2), [1]:

xk+1 = argmin
s

{
⟨∇f (xk), s⟩+ 1

2s
⊤∇2f (xk)s +

M
6 ∥s∥

3
}
.

• Tensor-метод (p = 3), [3]:

xk+1 = argmin
y

{
Φxk ,3(y) +

M
24∥y − xk∥4

}
.

• QN-обновление, [1]:

xk+1 = xk − Hk ∇f (xk).
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(L0, L1)-гладкость ([2])

Определение:

∥∇f (y)−∇f (x)∥ ≤
(
L0 + L1 ∥∇f (x)∥

)
∥y − x∥.

Следствие: Если ∥∇f (xk)∥ ≥ L0
L1

, то GD-модификации сходятся

линейно.
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Обобщение (L0, L1)-условия на методы высших порядков

Идея:

∥Dpf (x)− Dpf (y)∥ ≤
(
L0 + L1 ∥Dp−1f (x)∥

)
∥y − x∥.

Цель:

• Сохранить режим линейной или суперлинейной сходимости.
• Адаптивно переключаться, когда нормы высших производных

малы.
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Итог и направления развития

• CRN обеспечивает сходимость O(ε−1/2) (см. [1]).
• QN-аппроксимация с кубической регуляризацией даёт O(k−1) и

O(k−2) (ускоренный вариант).
• (L0, L1)-гладкость демонстрирует линейный режим для GD (по

[2]).
• Обобщение на высшие порядки: исследовать аналогичные

свойства для p ≥ 2 (тензорные методы, см. [3]).
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