Influence of hyperparameters on online aggregation with countable experts

17 May 2024, 18:03
12m
Физтех.Цифра, Поточная аудитория (МФТИ)

Физтех.Цифра, Поточная аудитория

МФТИ

141701, Россия, г. Долгопрудный, Институтский переулок, д. 9
Computer & Data Science 17 Computer & Data Science

Speaker

Sergey Kunin-Bogoiavlenskii

Description

Aggregating forecasts from multiple experts is a valuable method to improve prediction accuracy. Our work examines the influence of hyperparameters on the accuracy of the aggregation algorithm for a countable number of experts. We implement a time series generator with specified properties and an aggregating forecasting model. We conduct a series of experiments with various hyperparameters of the algorithm. The experiments confirm that these hyperparameters have a significant influence on the algorithm's performance.

Primary authors

Mrs Anastasia Zukhba (доцент кафедры МОУ МФТИ) Sergey Kunin-Bogoiavlenskii

Presentation materials