(4,3)-families of convex sets on a plane

Andrey Myatelin, advisor Alexander Polyanskii Moscow Institute of Physics and Technology

May 2024

УДК 519.157.3

We study the next problem. Let p and q be positive integers and let $p \geq q$. A family \mathcal{F} of convex sets is called satisfying (p,q)-property or just a (p,q)-family if among any p members of \mathcal{F} there are q of them having a point in common. For a (finite) family of sets \mathcal{C} transversal number of \mathcal{C} , denoted by $\tau(\mathcal{C})$, is the minimal cardinality of a set piercing \mathcal{C} , i.e. intersecting all the members of \mathcal{C} .

The (p,q) problem, stated by Hadwiger and Debrunner in [2], asks if for any positive integers p,q,d satisfying $p \geq q \geq d+1$ there is a number c such that any finite (p,q)-family of convex sets in \mathbb{R}^d can be pierced by c points. A positive answer on this question was given by N.Alon and D.Kleitman in [1]. The smallest number c that satisfies conditions of (p,q) theorem is denoted by $HD_d(p,q)$. In [2] Handiger and Debrunner prove that if (d-1)p < (q-1)d, then $HD_d(p,q) = p-q+1$. So, the "smallest" case when we don't know the exact value of $HD_d(p,q)$ is (p,q)=(4,3) with d=2. The upper bound of $HD_2(4,3)$ in Alon and Kleitman's proof is 343, which was later improved in [3] by Kleitman, Gyárfás and Tóth who proved that $3 \leq HD_2(4,3) \leq 13$. The latest improvement in the upper bound is 9 made by D.McGinnis [4]. Our goal is to find better upper bound of $HD_2(4,3)$ using the construction of the minimal polygon preserving the (4,3) property of the family.

From now on let \mathcal{F} be a finite (4,3)-family of convex sets on a plane. Consider \mathcal{U} - the set of all compact convex sets U in \mathbb{R}^2 such that for any distinct elements A_1, A_2, A_3, A_4 of \mathcal{F} there are three indices $i_1, i_2, i_3 \in [4]$ such that $i_1 < i_2 < i_3$ and $U \cap \bigcap_{j=1}^3 A_{i_j} \neq \emptyset$. In other words, intersection with U from \mathcal{U} preserves (4,3)-property of \mathcal{F} . Note that \mathcal{U} is a partially ordered set, where for two sets $U_1, U_2 \in \mathcal{U}$ $U_1 \leq U_2$ if and only if $U_1 \subseteq U_2$. We prove the next result:

Proposition 1. There is a minimal element of \mathcal{U} , in the sense introduces earlier. Moreover, any such minimal element U is a polygon and for any vertex v of U there are two distinct sets C_1, C_2 from \mathcal{F} such that $C_1 \cap C_2 \cap U = \{v\}$

We will call such minimal polygon a minimal polygon of family \mathcal{F} . Note that if we have a (4,3)-family of pairwise intersecting elements, i.e. the (2,2)-property, we can consider a set of convex compact sets that preserve both (4,3)-

and (2,2)-properties and in that case there also is a minimal polygon with the same features. The next claim allows us to focus on the case when the dimension of minimal polygon of \mathcal{F} is equal to 2:

Proposition 2. If U is a minimal polygon of (4,3)-family \mathcal{F} and dim $U \leq 1$, then $\tau(\mathcal{F}) \leq 2$

The general case when dim(U) = 2 is rather complicated, but in some special cases we get positive results

Proposition 3. If U is a minimal polygon of (4,3)-family \mathcal{F} and there is an edge e of U and a set $C \in \mathcal{F}$ such that $C \cap U = e$ then $\tau(\mathcal{F}) \leq 6$

Also, using the minimal polygon, we prove the next, likely new, result, which may be of independent interest:

Proposition 4. Any (4,3)-family of convex sets on a plane can be pierced by a union of one line and one point

References

- [1] Noga Alon and Daniel J Kleitman. Piercing convex sets and the hadwiger-debrunner (p, q)-problem. Advances in Mathematics, 96(1):103–112, 1992.
- [2] Hugo Hadwiger and Hans E. Debrunner. Über eine variante zum hellyschen satz. Archiv der Mathematik, 8:309–313, 1957.
- [3] Daniel Kleitman, András Gyárfás, and Géza Tóth. Convex sets in the plane with three of every four meeting. *Combinatorica*, 21:221–232, 04 2001.
- [4] Daniel McGinnis. A family of convex sets in the plane satisfying the (4, 3)-property can be pierced by nine points, 2020.