# Label Privacy in Vertical Federated Learning

Kseniya Shastakova Scientific adviser - Aleksandr Beznosikov

Moscow Institute of Physics and Technology shestakova.ko@phystech.edu

May 17, 2024

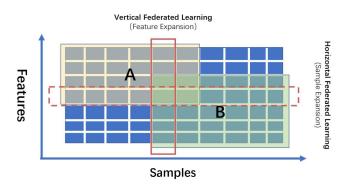
## Table of contents

- Introduction
  - Reminder
  - Problem Statement
  - Motivation
  - Stack
- Related Work
- Results
  - Results overview
  - Distributed ResNet architectures
  - Attacks & Defence
- References

### Introduction to VFL

Federated Learning (FL) - several parties (a server and clients) collaboratively train a ML model

Vertical Federated Learning (VFL) - different clients have different features describing same samples



## Problem Statement

- Explore privacy threats for VFL systems
- Develop defense strategy to ensure data privacy

### Motivation

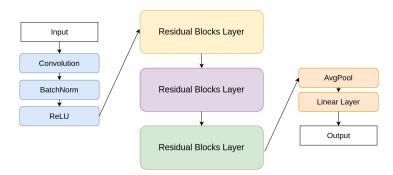
- Large ML models like ResNet are getting more and more popular
- CV models are in demand in medical services, but not all organizations can have the whole model on their local machines
- When using a huge model via server API, one still wants to keep one's data private [3]
- Current work is inspired by the problem of detecting health trends based on ECG

## Stack

- Data: multiclass classification (current dataset CIFAR10)
- Model: ResNet implemented with PyTorch library
- Computing resources: MIPT-Opt cluster

Stack

# ResNet



## Related work

Out research aims to expand the results from [1], that shows that activations  $h(x, \theta)$  and gradients  $g_h$  can be used to predict labels with k-means algorithm and describes possible defense based on:

- linearity of  $\mathbf{backprop}(x, \theta, g_h)$  w.r.t.  $g_h$ , thus it is possible to split the gradient  $g_h = \sum_{i=1}^m \alpha_m \hat{g}_h^{(m)}$
- splitting trained parameter  $\theta$  into  $\theta_1, \dots, \theta_n$  and using  $h'(x, \theta_1, \dots, \theta_n) = \sum_{i=1}^n W_i \odot h(x, \theta_i)$  for label prediction
- using regularization to prevent  $h(x, \theta_i)$  from leaking the labels

#### Results

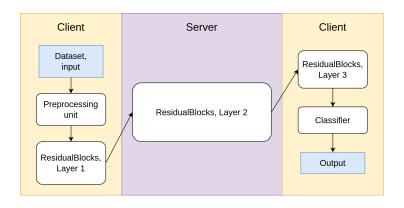
- Implemented FL model for different ResNet [2] distributed architectures
- Implemented attacks on the models based on KMeans algorithm and Logistic Regression
- Implemented defence based on regularization
- Implemented defence based on additional client layers

# Attack Model and Defence Strategies

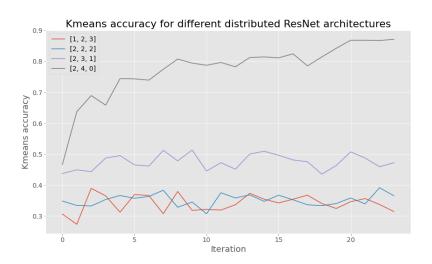
- Participants: Start Client, Server, End Client
- Attacks: prediction based on intermediate activations given from server to the end client
  - Kmeans: unsupervised clusterization method
  - Logistic Regression: supervised method
- Defence:
  - Regularization: loss is regularized based on LogisticRegression accuracy
  - Additional Layers: increase distance between server activations and final prediction



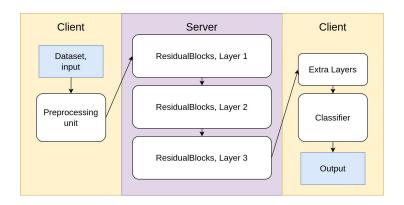
## Distributed ResNet architecture



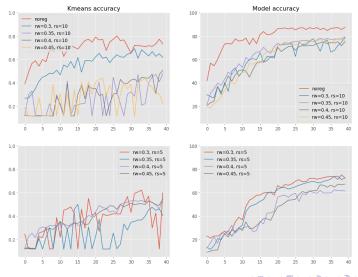
# Kmeans attack accuracy



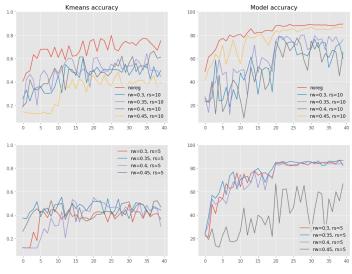
## Distributed ResNet architecture



# Four additional linear layers



# Additional ResidualBlock



## References



**Anonymous Authors** 

Label Privacy in Split Learning for Large Models with Parameter-Efficient Training Not published, under the review



Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun

Deep Residual Learning for Image Recognition

arxiv:1512.03385



Lei Yu, Meng Han, Yiming Li, Changting Lin, Yao Zhang, Mingyang Zhang, Haiqin Weng, Yuseok Jeon, Ka-Ho Chow, Stacy Patterson.

A Survey of Privacy Threats and Defense in Vertical Federated Learning: From Model Life Cycle Perspective

arXiv:2402.03688v1