Tree-width Driven SDP for The Max-Cut Problem

NeaH BopoHuH

Hayu4Hblii pykoBoguTens: Anekcanap Bynkunu

Moscow Institute of Physics and Technology

2 anpens 2024 .

Tree-width Driven SDP for The Max-Cut Problem MIPT

Outline

Problem statement
Semidefinite Program
Dual Problem

Our Goal

Tree-width Driven SDP for The Max-Cut Problem MIPT

Problem statement
e0

Problem statement

Given a weighted, undirected graph G = (V/, E) i.e. each edge,
(i,4), has a weight, wj; = w;;. The set of vertices is partitioned into
two parts, S and S := V' \ S . Let us call the weight of this "cut"
the sum of the weights of edges whose endpoints lie in different

parts
W(S) = Z wij
(iJ) € SxS§

The goal is to find the cut with maximal possible weight.

Tree-width Driven SDP for The Max-Cut Problem MIPT

Problem statement

Example

S wW(S)
{1,2,3} 315=28
{1,2,3,4} 311=4
{1,5,4) 24+3+4+1+5=15
{1,3,5} 2+4+3+1+5=15

The maximum cut is 15. Actually, the graph is not bipartite, the
total weight of all edges is 16, and there are no edges lighter than 1.

Tree-width Driven SDP for The Max-Cut Problem MIPT

Semidefinite Program
@0000

Semidefinite Program

Let us rephrase the problem in the context of Integer Linear
Programming (ILP) and reduce it to Semidefinite Programming
(SDP)

For each vertex 7 in the graph, we define the indicator

x; € {—1,41} , characterizing the affiliation of i € S or i € S,
respectively.

Similarly, for each edge (i,/), we define the indicator

yij = yji = xixj € {—1,+1} characterizing the belonging of the
edge to the cut. Let x represent the vector x = (xi,...,xp), where
n=|V|.

Tree-width Driven SDP for The Max-Cut Problem MIPT

(o] lele]e]
Now the Max-Cut can be represented as

1 1
ILP = el 2 Z > wi(1-yj) = max 7 Z Z wi(1—xix;) =

. x2=1
Yii=XiX; ieVv jev ! eV jeVv
1
= max 5 Y > w;(l—Xj)=SDP
X=xxT 4

Xi=1 ieV jev
Clearly, Xjj = xix;j, hence xl-2 =Xi=1 = x;€{-1,+1}
In particular, the matrix X is

1. Symmetric with units on the diagonal

2. Positive semi-definite, indeed
WweR™: viXv=vixxTv=(x"Tv)T(xTv)=(x"v)?

Tree-width Driven SDP for The Max-Cut Problem MIPT

Semidefinite Program
[e]e] Tele]

Finally, let us consider the following problem

1 X12 ... Xin
1 X12 1 ... X2p
SDP* = max ZZ wi(1-Xg), rae X= | .= | »0
ieV jev : : :
Xin X2n ... 1

Such formulation is a relaxation of the Max-Cut problem (matrix X
still meets properties 1 and 2).
The difference between the SDP and SDP* is as follows

SDP SDp*
X X=xxT, xcR" X=LLT, xeR™m
Xij | Xij = xix; € {—1,4+1} | Xj; arbitrary element

Tree-width Driven SDP for The Max-Cut Problem MIPT

Semidefinite Program
[e]e]e] o]

© 0 N o 00 A~ W N =

e e e =
o »p W N = O

16
17

import numpy as np
import cvxpy as cp

n =5
W = np.array([[0O, 2, 1, O, O],
[2, o, 4, 0, 3],
[1, 4, 0, 5, 0],
(o, o, 5, o, 11,
(o, 3, o, 1, 011)
X = cp.Variable((n, n), symmetric=True)
constraints = [X >> 0]
constraints += [X[i][i] == 1 for i in range(n)]
objective = cp.Maximize (0.25 * cp.sum(cp.multiply (W,
(1 - X))
prob = cp.Problem(objective, constraints)

prob.solve ()

Tree-width Driven SDP for The Max-Cut Problem MIPT

Semidefinite Program
[ee]e]e]]

The optimal value is 15.000002187529262
A solution X is

1 —1.00000047 1.0000005 —1.00000052 1.00000057
—1.00000047 1 —1.00000027 1.00000038 —1.00000037
1.0000005 —1.00000027 1 —1.00000026 1.0000004
—1.00000052 1.00000038 —1.00000026 1 —1.00000042

1.00000057 —1.00000037 1.0000004 —1.00000042 1

Indeed, the matrix X = 1 -1 1 -1 1

corresponds to the maximum cut S = {1,3,5} of the value
W(S) =15

Tree-width Driven SDP for The Max-Cut Problem MIPT

Dual Problem
[le]

Dual Problem

OPT = maxx ' Lx = 4- MaxCut, where L is the Laplacian of the graph

Xi2:1

n n

: 2

Dual = mfmemZ;/\,-(l —x7) — Zx,-ij,-j =
I: I7./

n

n n n
= max min E A — E xixjLij — g /\,-x,-2 = min E &=
A x4 — - Diag (&)=L
i=1 iy i=1

i=1

. TA-
= min maxx' Dia X
Diag(€)=L x?=1 g(f)

Tree-width Driven SDP for The Max-Cut Problem MIPT

Dual Problem
oe

import numpy as np
import cvxpy as cp

n =5
np.array ([[3, -2, -1, 0, 0],
[-2, 9, -4, o0, -3],
[-1, -4, 9, -5, 0],
[o, o0, -5, 6, -11,
[o, -3, o0, -1, 411)

© ® N O O A W N R
ol
]

=
= O

X = cp.Variable((n, n), diag=True)

12 constraints = [X >> L]
13 objective = cp.Minimize (cp.trace (X))
14 prob = cp.Problem(objective, constraints)

-
o

prob.solve ()
print ("\nThe optimal value is", 0.25 * prob.value)

The optimal value is 14.749999991267886

[
(=}

Tree-width Driven SDP for The Max-Cut Problem MIPT

®0000000
Our Goal

Lemma

Dual = min maxx' Diag(£)x = min maxx' Lyx = TreeRel
Diag(§)=L x2=1 LrzLx2=1

where L1 can be represented as LT = Liee + Diagonal, where Lijee
corresponds to Laplacian of a tree graph and Diag is a diagonal
matrix with non-negative values.

Proved v~

Tree-width Driven SDP for The Max-Cut Problem MIPT

Our Goal
0e000000

Current aim

He= min_ maxx' Tx, OPT =H, < ... < H;
T: T=TT=Lx?=1
tw(T) < k

where optimization is taken over all graph with tree-width less than
k. That is internal problem can be solved by dynamic programming.

Tree-width Driven SDP for The Max-Cut Problem MIPT

Our Goal
[e]e] lelelele]e]

Instead of insisting on treewidth < k matrix T can be restricted
for having less or equal than k diagonals.

D, = min max x| Tx then Hi < Dy
T: T=TT=L x?=1
T is < k—diagonal

Optimization for this problem can be performed using
Derivative-free methods. We will work with Hill climbing algorithm.

Tree-width Driven SDP for The Max-Cut Problem MIPT

https://github.com/SimonBlanke/Gradient-Free-Optimizers/blob/master/docs/gifs/hill_climbing_sphere_function_.gif

Our Goal
[e]e]e] lelele]e]

Possible implementation

1 def hill_climbing(f, x0):

2 x = x0O # initial solution

3 while True:

4 neighbors = generate_neighbors(x) # generate
neighbors of x

5 # find the neighbor with the highest function
value

6 best_neighbor = max(neighbors, key=f)

7 if f(best_neighbor) <= f(x): # if the best
neighbor is not better than x, stop

8 return Xx

9 x = best_neighbor # otherwise, continue with

the best neighbor

Tree-width Driven SDP for The Max-Cut Problem MIPT

Our Goal
[e]e]e]e] Telele]

Example

1 from gradient_free_optimizers import
HillClimbingOptimizer

> def convex_function(pos_new):

3 score = -(pos_new["x1"] * pos_new["x1"] + pos_new|[
"x2"] * pos_new["x2"])

4 return score

5 def constraint_1(para):

6 return paral["x1"]*x2 > 1

7 search_space = {

8 "x1": np.arange(-10, 10, 0.1),

9 "x2": np.arange(-10, 10, 0.1),

10 }

11 constraints_list = [constraint_1]

12 opt = HillClimbingOptimizer (search_space, constraintss=

constraints_list)
13 opt.search(convex_function, n_iter=100)
14 search_data = opt.search_data
15 print ("\n search_data \n", search_data, "\n")

Tree-width Driven SDP for The Max-Cut Problem MIPT

Our Goal
[e]e]e]ele] lele]

Results: 'convex-function’

Best score: -1.000000000000064

Best parameter:
'x1' : -1.000000000000032
'x2" 1 -3.552713678800501e-14

GeoGebra

Tree-width Driven SDP for The Max-Cut Problem MIPT

https://www.geogebra.org/3d/kwmwfquz

Our Goal
00000080

References

[1] 0.878-approximation for the Max-Cut problem, Lecture by Divya
Padmanabhanx'

[2] Ryan O'Donnell CS Theory Toolkit at CMU, YouTube

[3] gradient-free-optimizers package in Python, GitHub

[4] Convex Optimization, Lieven Vandenberghe, Stephen Boyd,
Stanford University

Tree-width Driven SDP for The Max-Cut Problem MIPT

https://www.iitgoa.ac.in/~sreejithav/misc/maxcut.pdf
https://www.youtube.com/@RyanODonnellTeaching/playlists
https://github.com/SimonBlanke/Gradient-Free-Optimizers?tab=readme-ov-file##installation
https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf##page127

Our Goal
0000000

The End

Tree-width Driven SDP for The Max-Cut Problem MIPT

	Problem statement
	Semidefinite Program
	Dual Problem
	Our Goal

