
Problem statement Semidefinite Program Dual Problem Our Goal

Tree-width Driven SDP for The Max-Cut Problem

Иван Воронин
Научный руководитель: Александр Булкин

Moscow Institute of Physics and Technology

2 апреля 2024 г.

Tree-width Driven SDP for The Max-Cut Problem MIPT

Problem statement Semidefinite Program Dual Problem Our Goal

Outline

Problem statement

Semidefinite Program

Dual Problem

Our Goal

Tree-width Driven SDP for The Max-Cut Problem MIPT

Problem statement Semidefinite Program Dual Problem Our Goal

Problem statement

Given a weighted, undirected graph G = (V ,E) i.e. each edge,
(i , j), has a weight, wij = wji . The set of vertices is partitioned into
two parts, S and S̄ := V \ S . Let us call the weight of this "cut"
the sum of the weights of edges whose endpoints lie in different
parts

W (S) :=
∑

(i ,j) ∈ S×S̄

wij

The goal is to find the cut with maximal possible weight.

Tree-width Driven SDP for The Max-Cut Problem MIPT

Problem statement Semidefinite Program Dual Problem Our Goal

Example

S W (S)

{1, 2, 3} 3 + 5 = 8

{1, 2, 3, 4} 3 + 1 = 4

{1, 5, 4} 2 + 3 + 4 + 1 + 5 = 15

{1, 3, 5} 2 + 4 + 3 + 1 + 5 = 15

The maximum cut is 15. Actually, the graph is not bipartite, the
total weight of all edges is 16, and there are no edges lighter than 1.

Tree-width Driven SDP for The Max-Cut Problem MIPT

Problem statement Semidefinite Program Dual Problem Our Goal

Semidefinite Program

Let us rephrase the problem in the context of Integer Linear
Programming (ILP) and reduce it to Semidefinite Programming
(SDP)
For each vertex i in the graph, we define the indicator
xi ∈ {−1,+1} , characterizing the affiliation of i ∈ S or i ∈ S̄ ,
respectively.
Similarly, for each edge (i , j), we define the indicator
yij = yji = xixj ∈ {−1,+1} characterizing the belonging of the
edge to the cut. Let x represent the vector x = (x1, . . . , xn), where
n = |V |.

Tree-width Driven SDP for The Max-Cut Problem MIPT

Problem statement Semidefinite Program Dual Problem Our Goal

Now the Max-Cut can be represented as

ILP = max
xi∈{−1,+1}

yij=xixj

1

4

∑
i∈V

∑
j∈V

wij(1−yij) = max
x2i =1

1

4

∑
i∈V

∑
j∈V

wij(1−xixj) =

= max
X=xxT
Xii=1

1

4

∑
i∈V

∑
j∈V

wij(1− Xij) = SDP

Clearly, Xij = xixj , hence x2i = Xii = 1 =⇒ xi ∈ {−1,+1}

In particular, the matrix X is
1. Symmetric with units on the diagonal
2. Positive semi-definite, indeed

∀v ∈ Rn : vTXv = vT xxT v = (xT v)T (xT v) = (xT v)2

Tree-width Driven SDP for The Max-Cut Problem MIPT

Problem statement Semidefinite Program Dual Problem Our Goal

Finally, let us consider the following problem

SDP∗ = max
1

4

∑
i∈V

∑
j∈V

wij(1−Xij), где X =


1 x12 . . . x1n
x12 1 . . . x2n
...

...
. . .

...
x1n x2n . . . 1

 ≽ 0

Such formulation is a relaxation of the Max-Cut problem (matrix X
still meets properties 1 and 2).
The difference between the SDP and SDP∗ is as follows

SDP SDP∗

X X = xxT , x ∈ Rn X = LLT , x ∈ Rn×m

Xij Xij = xixj ∈ {−1,+1} Xij arbitrary element

Tree-width Driven SDP for The Max-Cut Problem MIPT

Problem statement Semidefinite Program Dual Problem Our Goal

1 import numpy as np
2 import cvxpy as cp
3

4 n = 5
5 W = np.array ([[0, 2, 1, 0, 0],
6 [2, 0, 4, 0, 3],
7 [1, 4, 0, 5, 0],
8 [0, 0, 5, 0, 1],
9 [0, 3, 0, 1, 0]])

10

11

12 X = cp.Variable ((n, n), symmetric=True)
13 constraints = [X >> 0]
14 constraints += [X[i][i] == 1 for i in range(n)]
15 objective = cp.Maximize (0.25 * cp.sum(cp.multiply(W,

(1 - X))))
16 prob = cp.Problem(objective , constraints)
17 prob.solve ()

Tree-width Driven SDP for The Max-Cut Problem MIPT

Problem statement Semidefinite Program Dual Problem Our Goal

The optimal value is 15.000002187529262
A solution X is

1 −1.00000047 1.0000005 −1.00000052 1.00000057
−1.00000047 1 −1.00000027 1.00000038 −1.00000037
1.0000005 −1.00000027 1 −1.00000026 1.0000004

−1.00000052 1.00000038 −1.00000026 1 −1.00000042
1.00000057 −1.00000037 1.0000004 −1.00000042 1



Indeed, the matrix X =


1 −1 1 −1 1
−1 1 −1 1 −1
1 −1 1 −1 1
−1 1 −1 1 −1
1 −1 1 −1 1


corresponds to the maximum cut S = {1, 3, 5} of the value
W (S) = 15

Tree-width Driven SDP for The Max-Cut Problem MIPT

Problem statement Semidefinite Program Dual Problem Our Goal

Dual Problem

OPT = max
x2i =1

xTLx = 4·MaxCut, where L is the Laplacian of the graph

Dual = max
λ

min
x

n∑
i=1

λi (1− x2i)−
n∑
i ,j

xixjLij =

= max
λ

min
x

n∑
i=1

λi −
n∑
i ,j

xixjLij −
n∑

i=1

λix
2
i = min

Diag(ξ)≽L

n∑
i=1

ξi =

= min
Diag(ξ)≽L

max
x2i =1

xTDiag(ξ)x

Tree-width Driven SDP for The Max-Cut Problem MIPT

Problem statement Semidefinite Program Dual Problem Our Goal

1 import numpy as np
2 import cvxpy as cp
3

4 n = 5
5 L = np.array ([[3, -2, -1, 0, 0],
6 [-2, 9, -4, 0, -3],
7 [-1, -4, 9, -5, 0],
8 [0, 0, -5, 6, -1],
9 [0, -3, 0, -1, 4]])

10

11 X = cp.Variable ((n, n), diag=True)
12 constraints = [X >> L]
13 objective = cp.Minimize(cp.trace(X))
14 prob = cp.Problem(objective , constraints)
15 prob.solve ()
16 print("\nThe optimal value is", 0.25 * prob.value)

The optimal value is 14.749999991267886

Tree-width Driven SDP for The Max-Cut Problem MIPT

Problem statement Semidefinite Program Dual Problem Our Goal

Our Goal

Lemma

Dual = min
Diag(ξ)≽L

max
x2i =1

xTDiag(ξ)x = min
LT≽L

max
x2i =1

xTLT x = TreeRel

where LT can be represented as LT = Ltree +Diagonal , where Ltree
corresponds to Laplacian of a tree graph and Diag is a diagonal
matrix with non-negative values.

Proved

Tree-width Driven SDP for The Max-Cut Problem MIPT

Problem statement Semidefinite Program Dual Problem Our Goal

Current aim

Hk = min
T : T=T⊤≽L
tw(T) ⩽ k

max
x2i =1

x⊤Tx , OPT = Hk ⩽ . . . ⩽ H1

where optimization is taken over all graph with tree-width less than
k . That is internal problem can be solved by dynamic programming.

Tree-width Driven SDP for The Max-Cut Problem MIPT

Problem statement Semidefinite Program Dual Problem Our Goal

Instead of insisting on treewidth ⩽ k matrix T can be restricted
for having less or equal than k diagonals.

Dk = min
T : T=T⊤≽L

T is ⩽ k−diagonal

max
x2i =1

x⊤Tx then Hk ⩽ Dk

Optimization for this problem can be performed using
Derivative-free methods. We will work with Hill climbing algorithm.

Tree-width Driven SDP for The Max-Cut Problem MIPT

https://github.com/SimonBlanke/Gradient-Free-Optimizers/blob/master/docs/gifs/hill_climbing_sphere_function_.gif

Problem statement Semidefinite Program Dual Problem Our Goal

Possible implementation

1 def hill_climbing(f, x0):
2 x = x0 # initial solution
3 while True:
4 neighbors = generate_neighbors(x) # generate

neighbors of x
5 # find the neighbor with the highest function

value
6 best_neighbor = max(neighbors , key=f)
7 if f(best_neighbor) <= f(x): # if the best

neighbor is not better than x, stop
8 return x
9 x = best_neighbor # otherwise , continue with

the best neighbor

Tree-width Driven SDP for The Max-Cut Problem MIPT

Problem statement Semidefinite Program Dual Problem Our Goal

Example

1 from gradient_free_optimizers import
HillClimbingOptimizer

2 def convex_function(pos_new):
3 score = -(pos_new["x1"] * pos_new["x1"] + pos_new[

"x2"] * pos_new["x2"])
4 return score
5 def constraint_1(para):
6 return para["x1"]**2 > 1
7 search_space = {
8 "x1": np.arange(-10, 10, 0.1),
9 "x2": np.arange(-10, 10, 0.1),

10 }
11 constraints_list = [constraint_1]
12 opt = HillClimbingOptimizer(search_space , constraints=

constraints_list)
13 opt.search(convex_function , n_iter =100)
14 search_data = opt.search_data
15 print("\n search_data \n", search_data , "\n")

Tree-width Driven SDP for The Max-Cut Problem MIPT

Problem statement Semidefinite Program Dual Problem Our Goal

Results: ’convex-function’
Best score: -1.000000000000064
Best parameter:

’x1’ : -1.000000000000032
’x2’ : -3.552713678800501e-14

GeoGebra

Tree-width Driven SDP for The Max-Cut Problem MIPT

https://www.geogebra.org/3d/kwmwfquz

Problem statement Semidefinite Program Dual Problem Our Goal

References

[1] 0.878-approximation for the Max-Cut problem, Lecture by Divya
Padmanabhanx‘
[2] Ryan O’Donnell CS Theory Toolkit at CMU, YouTube
[3] gradient-free-optimizers package in Python, GitHub
[4] Convex Optimization, Lieven Vandenberghe, Stephen Boyd,
Stanford University

Tree-width Driven SDP for The Max-Cut Problem MIPT

https://www.iitgoa.ac.in/~sreejithav/misc/maxcut.pdf
https://www.youtube.com/@RyanODonnellTeaching/playlists
https://github.com/SimonBlanke/Gradient-Free-Optimizers?tab=readme-ov-file##installation
https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf##page127

Problem statement Semidefinite Program Dual Problem Our Goal

The End

Tree-width Driven SDP for The Max-Cut Problem MIPT

	Problem statement
	Semidefinite Program
	Dual Problem
	Our Goal

