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Problem statement

Given a weighted, undirected graph G = (V ,E ) i.e. each edge,
(i , j), has a weight, wij = wji . The set of vertices is partitioned into
two parts, S and S̄ := V \ S . Let us call the weight of this "cut"
the sum of the weights of edges whose endpoints lie in different
parts

W (S) :=
∑

(i ,j) ∈ S×S̄

wij

The goal is to find the cut with maximal possible weight.

Tree-width Driven SDP for The Max-Cut Problem MIPT



Problem statement Semidefinite Program Dual Problem Our Goal

Example

S W (S)

{1, 2, 3} 3 + 5 = 8

{1, 2, 3, 4} 3 + 1 = 4

{1, 5, 4} 2 + 3 + 4 + 1 + 5 = 15

{1, 3, 5} 2 + 4 + 3 + 1 + 5 = 15

The maximum cut is 15. Actually, the graph is not bipartite, the
total weight of all edges is 16, and there are no edges lighter than 1.
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Semidefinite Program

Let us rephrase the problem in the context of Integer Linear
Programming (ILP) and reduce it to Semidefinite Programming
(SDP)
For each vertex i in the graph, we define the indicator
xi ∈ {−1,+1} , characterizing the affiliation of i ∈ S or i ∈ S̄ ,
respectively.
Similarly, for each edge (i , j), we define the indicator
yij = yji = xixj ∈ {−1,+1} characterizing the belonging of the
edge to the cut. Let x represent the vector x = (x1, . . . , xn), where
n = |V |.
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Now the Max-Cut can be represented as

ILP = max
xi∈{−1,+1}

yij=xixj

1

4

∑
i∈V

∑
j∈V

wij(1−yij) = max
x2i =1

1

4

∑
i∈V

∑
j∈V

wij(1−xixj) =

= max
X=xxT
Xii=1

1

4

∑
i∈V

∑
j∈V

wij(1− Xij) = SDP

Clearly, Xij = xixj , hence x2i = Xii = 1 =⇒ xi ∈ {−1,+1}

In particular, the matrix X is
1. Symmetric with units on the diagonal
2. Positive semi-definite, indeed

∀v ∈ Rn : vTXv = vT xxT v = (xT v)T (xT v) = (xT v)2
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Finally, let us consider the following problem

SDP∗ = max
1

4

∑
i∈V

∑
j∈V

wij(1−Xij), где X =


1 x12 . . . x1n
x12 1 . . . x2n
...

...
. . .

...
x1n x2n . . . 1

 ≽ 0

Such formulation is a relaxation of the Max-Cut problem (matrix X
still meets properties 1 and 2).
The difference between the SDP and SDP∗ is as follows

SDP SDP∗

X X = xxT , x ∈ Rn X = LLT , x ∈ Rn×m

Xij Xij = xixj ∈ {−1,+1} Xij arbitrary element
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1 import numpy as np
2 import cvxpy as cp
3

4 n = 5
5 W = np.array ([[0, 2, 1, 0, 0],
6 [2, 0, 4, 0, 3],
7 [1, 4, 0, 5, 0],
8 [0, 0, 5, 0, 1],
9 [0, 3, 0, 1, 0]])

10

11

12 X = cp.Variable ((n, n), symmetric=True)
13 constraints = [X >> 0]
14 constraints += [X[i][i] == 1 for i in range(n)]
15 objective = cp.Maximize (0.25 * cp.sum(cp.multiply(W,

(1 - X))))
16 prob = cp.Problem(objective , constraints)
17 prob.solve ()
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The optimal value is 15.000002187529262
A solution X is

1 −1.00000047 1.0000005 −1.00000052 1.00000057
−1.00000047 1 −1.00000027 1.00000038 −1.00000037
1.0000005 −1.00000027 1 −1.00000026 1.0000004

−1.00000052 1.00000038 −1.00000026 1 −1.00000042
1.00000057 −1.00000037 1.0000004 −1.00000042 1



Indeed, the matrix X =


1 −1 1 −1 1
−1 1 −1 1 −1
1 −1 1 −1 1
−1 1 −1 1 −1
1 −1 1 −1 1


corresponds to the maximum cut S = {1, 3, 5} of the value
W (S) = 15
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Dual Problem

OPT = max
x2i =1

xTLx = 4·MaxCut, where L is the Laplacian of the graph

Dual = max
λ

min
x

n∑
i=1

λi (1− x2i )−
n∑
i ,j

xixjLij =

= max
λ

min
x

n∑
i=1

λi −
n∑
i ,j

xixjLij −
n∑

i=1

λix
2
i = min

Diag(ξ)≽L

n∑
i=1

ξi =

= min
Diag(ξ)≽L

max
x2i =1

xTDiag(ξ)x
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1 import numpy as np
2 import cvxpy as cp
3

4 n = 5
5 L = np.array ([[ 3, -2, -1, 0, 0],
6 [-2, 9, -4, 0, -3],
7 [-1, -4, 9, -5, 0],
8 [ 0, 0, -5, 6, -1],
9 [ 0, -3, 0, -1, 4]])

10

11 X = cp.Variable ((n, n), diag=True)
12 constraints = [X >> L]
13 objective = cp.Minimize(cp.trace(X))
14 prob = cp.Problem(objective , constraints)
15 prob.solve ()
16 print("\nThe optimal value is", 0.25 * prob.value)

The optimal value is 14.749999991267886
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Our Goal

Lemma

Dual = min
Diag(ξ)≽L

max
x2i =1

xTDiag(ξ)x = min
LT≽L

max
x2i =1

xTLT x = TreeRel

where LT can be represented as LT = Ltree +Diagonal , where Ltree
corresponds to Laplacian of a tree graph and Diag is a diagonal
matrix with non-negative values.

Proved
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Current aim

Hk = min
T : T=T⊤≽L
tw(T ) ⩽ k

max
x2i =1

x⊤Tx , OPT = Hk ⩽ . . . ⩽ H1

where optimization is taken over all graph with tree-width less than
k . That is internal problem can be solved by dynamic programming.
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Instead of insisting on treewidth ⩽ k matrix T can be restricted
for having less or equal than k diagonals.

Dk = min
T : T=T⊤≽L

T is ⩽ k−diagonal

max
x2i =1

x⊤Tx then Hk ⩽ Dk

Optimization for this problem can be performed using
Derivative-free methods. We will work with Hill climbing algorithm.
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Possible implementation

1 def hill_climbing(f, x0):
2 x = x0 # initial solution
3 while True:
4 neighbors = generate_neighbors(x) # generate

neighbors of x
5 # find the neighbor with the highest function

value
6 best_neighbor = max(neighbors , key=f)
7 if f(best_neighbor) <= f(x): # if the best

neighbor is not better than x, stop
8 return x
9 x = best_neighbor # otherwise , continue with

the best neighbor
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Example

1 from gradient_free_optimizers import
HillClimbingOptimizer

2 def convex_function(pos_new):
3 score = -(pos_new["x1"] * pos_new["x1"] + pos_new[

"x2"] * pos_new["x2"])
4 return score
5 def constraint_1(para):
6 return para["x1"]**2 > 1
7 search_space = {
8 "x1": np.arange(-10, 10, 0.1),
9 "x2": np.arange(-10, 10, 0.1),

10 }
11 constraints_list = [constraint_1]
12 opt = HillClimbingOptimizer(search_space , constraints=

constraints_list)
13 opt.search(convex_function , n_iter =100)
14 search_data = opt.search_data
15 print("\n search_data \n", search_data , "\n")
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Results: ’convex-function’
Best score: -1.000000000000064
Best parameter:

’x1’ : -1.000000000000032
’x2’ : -3.552713678800501e-14

GeoGebra
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The End
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