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What can be forecast?
What can be forecast?

Tell us what the future holds, so
we may know that you are gods.

Isaiah 41:23

Weather conditions
Economic trends
Technology advancements
Consumer behavior

Population growth

Political elections outcomes

Kunin-Bogoiavlenskii S. (MIPT) Experts aggregating April 2, 2024 3/10



Targets
Targets

Prediction is very difficult,
especially if it's about the future.

Niels Bohr

© Time series generator implementation
© Aggregating algorithm implementation

© Experiments with various hyperparameters
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Problem statement Data

Problem statement

There are two kinds of
forecasters: those who

don’t know, and those who
don't know they don’t know.

John Kenneth Galbraith

Data
It is assumed that there are multiple generators, whose structure is

unknown to the predictors. These generators switch, producing a time
series that is subdivided into a sequence of segments - areas of
stationarity, which can be studied using machine learning methods.

Gerators implemented:

@ Linear
o ARMA
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Problem statement KU

Problem statement

Terms

@ X — signals space

@ Y — responses space

o N — set of experts, indexed by natural numbers

@ D — desicion space, to which predictions belong

@ A:D xY — R, — nonnegative loss function

. T .

o L' = Zl l{ — cumulative loss of expert i during the first T steps

t=
T

e Hy = >  hy — master's cumulative loss during the first T steps
t=1

° ’T =Hr — LiT — master’s regret relative to the expert i
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Problem statement [EA\ECIgIE T}

Problem statement

Algorithm

FORt=1,2,...:
1. Expert £t initialization
. Experts’ predictions £} = fi(x;), 1 <i<t
. Master’s prediction evaluation ~; = Subst(f;, wy)

. Computation of master's loss hy = \(p;, y+) and experts’ losses /{

Mixing Update weights modification

2
3
4
5. Loss Update weights modification
6.
ENDFOR
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Experiments

Initialization weights

1

Default WeightS' wi = m

Experimental: etc.

IC“ (l+1)|n(l+1)|n In(i+1)’

Window size

As the algorithm does not know the locations of generator switches,
finding an optimal training window is also a challenge.

Mixing update coefficients

Default coefficient: oy = ﬁll
etc.

: .1
Experimental: (CSIEL

Metric - the regret

Kunin-Bogoiavlenskii S. (MIPT) Experts aggregating April 2, 2024 8/10



Losses plot
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The End
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