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Introduction What can be forecast?

What can be forecast?

Tell us what the future holds, so
we may know that you are gods.

Isaiah 41:23

Weather conditions

Economic trends

Technology advancements

Consumer behavior

Population growth

Political elections outcomes
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Introduction Targets

Targets

Prediction is very difficult,
especially if it’s about the future.

Niels Bohr

1 Time series generator implementation

2 Aggregating algorithm implementation

3 Experiments with various hyperparameters
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Problem statement Data

Problem statement

There are two kinds of
forecasters: those who
don’t know, and those who
don’t know they don’t know.

John Kenneth Galbraith

Data
It is assumed that there are multiple generators, whose structure is
unknown to the predictors. These generators switch, producing a time
series that is subdivided into a sequence of segments - areas of
stationarity, which can be studied using machine learning methods.

Gerators implemented:

Linear

ARMA
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Problem statement Terms

Problem statement

Terms

X — signals space

Y — responses space

N — set of experts, indexed by natural numbers

D — desicion space, to which predictions belong

λ : D× Y → R+ — nonnegative loss function

LiT =
T∑
t=1

l it — cumulative loss of expert i during the first T steps

HT =
T∑
t=1

ht — master’s cumulative loss during the first T steps

R i
T = HT − LiT — master’s regret relative to the expert i
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Problem statement Algorithm

Problem statement

Algorithm

FOR t = 1, 2, . . . :

1. Expert f t initialization

2. Experts’ predictions f it = f it (xt), 1 ≤ i ≤ t

3. Master’s prediction evaluation γt = Subst(ft, ŵt)

4. Computation of master’s loss ht = λ(pt , yt) and experts’ losses l it

5. Loss Update weights modification

6. Mixing Update weights modification

ENDFOR
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Experiments

Experiments

Initialization weights

Default weights: w i
1 =

1
(i+1) ln2(i+1)

Experimental: 1
iα ,

1
(i+1) ln(i+1) ln2 ln(i+1)

, etc.

Window size

As the algorithm does not know the locations of generator switches,
finding an optimal training window is also a challenge.

Mixing update coefficients

Default coefficient: αt =
1

t+1

Experimental: 1
(t+1)β

, etc.

Metric - the regret
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Experiments

Losses plot
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Experiments

The End
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