

Helly-type problems and families of convex sets satisfying (p, q) -property

Andrey Myatelin

Scientific advisor - Alexander Polyanskii

April 9th 2024

Overview

1 Classic results

- Helly's Theorem
- Generalizations of Helly's theorem

2 Extension of colorful Helly Theorem

3 Our problem and current progress

Helly's theorem is one of the cornerstones of combinatorial convexity, providing an effective method for determining the intersection pattern of a finite family of convex sets

Theorem 1 (Helly's Theorem)

Let \mathcal{F} be a finite family of convex sets in \mathbb{R}^d . If every $d + 1$ or fewer sets of them have a non-empty intersection, then $\bigcap \mathcal{F} \neq \emptyset$, where $\bigcap \mathcal{F} := \bigcap_{C \in \mathcal{F}} C$

Generalizations of Helly's theorem

Theorem 2 (fractional Helly)

Let $\alpha \in (0, 1]$ and $d \geq 2$ be fixed. If \mathcal{F} is a family of convex sets in \mathbb{R}^d , $|\mathcal{F}| = n$, with at least $\alpha \binom{n}{d+1}$ intersecting $d + 1$ tuples, then there exists an intersecting subfamily $\mathcal{F}' \subset \mathcal{F}$, with $|\mathcal{F}'| \geq \beta n$, where $\beta > 0$ is a constant that depends only on d and α .

Theorem 3 (colorful Helly)

Let $\mathcal{F}_1, \dots, \mathcal{F}_{d+1}$ be finite families of convex sets in \mathbb{R}^d . If $\bigcap_{i=1}^{d+1} C_i \neq \emptyset$ for all $C_1 \in \mathcal{F}_1, \dots, C_{d+1} \in \mathcal{F}_{d+1}$ then there exists $i \in [d + 1]$ such that $\bigcap \mathcal{F}_i \neq \emptyset$

Extension of colorful Helly Theorem

The colorful Helly theorem only provides information that some family has a non-empty intersection, and we do not know anything else about this intersection. Next result provides some additional information on it

Theorem 4 (W.Rao)

Let $\mathcal{F}_1, \dots, \mathcal{F}_{d+1}$ be finite families of convex sets in \mathbb{R}^d . If $\bigcap_{i=1}^{d+1} C_i \neq \emptyset$ for all $C_1 \in \mathcal{F}_1, \dots, C_{d+1} \in \mathcal{F}_{d+1}$ then $\sum_{i=1}^{d+1} \dim \bigcap \mathcal{F}_i \geq 0$, where $\dim \emptyset = -1$

Method of Proof of Theorem 4

The proof of Theorem 5 uses reduction to polytopes and considers minimal with respect to inclusion compact convex set U such that families $\mathcal{F}_1 \cap U, \dots, \mathcal{F}_{d+1} \cap U$ satisfy colorful Helly property.

It is easy to see that U is a polytope and every vertex of U is contained in the intersection of some family $\bigcap \mathcal{F}_i$. Then the statement of the theorem is proved by induction on d .

The Problem

Let \mathcal{F} be a finite family of convex sets in \mathbb{R}^d . For $p \geq q \geq d + 1$ we say that \mathcal{F} has (p, q) property if among any p sets from \mathcal{F} there are q having a common point

It is well known that for any family \mathcal{F} in \mathbb{R}^d satisfying the (p, q) property there is a set of fixed size $HD_d(p, q)$ that intersects all the sets in \mathcal{F} . However, the minimal value of $HD_d(p, q)$ is unknown even for $HD_2(4, 3)$. It is only known that $HD_2(4, 3) \geq 3$ and $HD_2(4, 3) \leq 9$ (Daniel MCGinnis)

The Problem

It is interesting to see if we can apply method of proof of Theorem 4 McGinnis's paper to get a better upper bound on $HD_d(p, q)$ and, as the easiest case, $HD_2(4, 3)$

Current progress

Following the method of proof of Theorem 4, consider family \mathcal{U} of all compact convex sets U such that $\mathcal{F} \cap U$ has $(4,3)$ -property.

It is easy to check that \mathcal{U} has minimal element U with respect to inclusion and that U is a polytope.

Then it was proved that for every vertex v of U there are two sets C_1, C_2 from \mathcal{F} such that $C_1 \cap C_2 \cap U = \{v\}$. Using this fact it can be shown that if $\dim U < 2$ \mathcal{F} can be pierced by 2 points.

Throughout the next part of presentation we fix on the case when $\dim U = 2$

Current progress

Let v be a fixed vertex of U and C_1, C_2 be the sets from \mathcal{F} such that $C_1 \cap C_2 \cap U = \{v\}$.

Note that by separation theorem there is a line l_v such that $C_i \cap U \cap l_v = \{v\}$

Also we can conclude from (4,3) property that for any two vertices v_1, v_2 of U there is a set $C \in \mathcal{F}$ that contains $[v_1, v_2]$. This is particularly interesting when $[v_1, v_2]$ is an edge of U

Claim

There is a point $p \in \mathbb{R}^2$ such that all the sets from \mathcal{F} that don't contain p are pairwise intersecting

Proof: Let G be the graph whose vertices are the sets from \mathcal{F} and two set A and B form an edge iff they are disjoint.

Note that by (4,3) property there are no disjoint edges and triangles in this graph. Thus, the only connected component with edges of G consists of the vertices A, B_1, \dots, B_n and edges $(A, B_1), \dots, (A, B_n)$.

Again, by (4,3) property we have that any three of the sets B_1, \dots, B_n have a common point. Then, by Helly's theorem we have that all the sets B_1, \dots, B_n have a common point, which finishes the proof.

Note that we can construct the minimal polytope U for a pairwise intersecting family \mathcal{F} that will conserve all pairs of sets intersecting and (4,3) property of \mathcal{F} and it will have the same features as the minimal polytope introduced before.

Thus, we obtain the next interesting fact:

Claim

Any (4,3) family of convex sets on a plane can be pierced by a union of one point and one line

Proof: just take point p from previous claim and a line l_v for any vertex v of U

The next theorem was proved by D.Kleitman, A.Gyarfas and G.Toth in [2]:

Theorem(Kleitman, Gyarfas, Toth)

Let Q be a "horizontal" line and \mathcal{F} be a family of convex polygons such that any two polygons from \mathcal{F} meet on or above Q , and if three sets from \mathcal{F} are mutually disjoint on Q then they have a common point above Q . Then \mathcal{F} can be pierced by 5 points.

From this theorem we can deduce the solution of our problem in some easy cases:

Claim

If there is a set C from \mathcal{F} such that $C \cap U$ is an edge of U then \mathcal{F} can be pierced by 6 points

Let Δ^n be n -dimensional simplex in \mathbb{R}^{n+1} with vertices e_1, \dots, e_{n+1} , where e_1, \dots, e_{n+1} form an orthonormal basis of \mathbb{R}^{n+1}

Theorem(KKM lemma)

Let Δ^n be n -dimensional simplex and A_1, \dots, A_{n+1} are open(closed) subsets of Δ^n . If for each face σ of Δ^n $\sigma \subset \bigcup_{e_i \in \sigma} A_i$ then $\bigcap A_i \neq \emptyset$

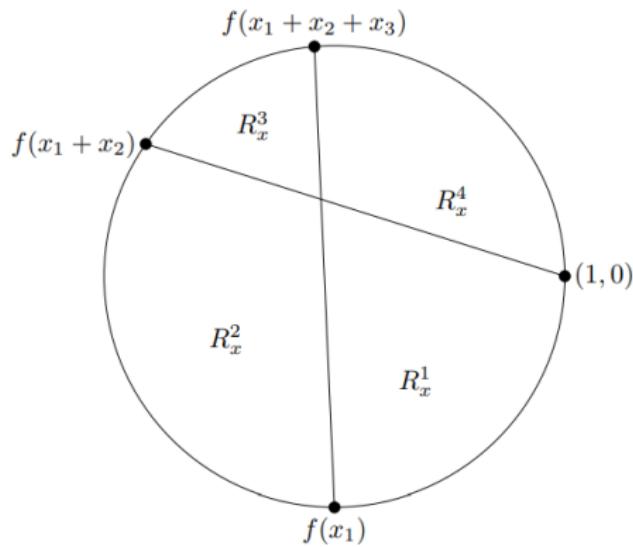
For a family \mathcal{F} of sets $\nu(\mathcal{F})$ is the maximal cardinality of a subset of \mathcal{F} consisting of pairwise disjoint sets, and $\tau(\mathcal{F})$ is the minimal cardinality of a set intersecting all the members of \mathcal{F} .

d-interval is a union of intervals lying on d disjoint lines, which containing one interval per a line.

Theorem(Tardos, Kaiser)

Let \mathcal{F} be a finite family of d-intervals. If $d = 1$ then $\tau(\mathcal{F}) = \nu(\mathcal{F})$. If $d > 1$ then $\tau(\mathcal{F}) \leq (d^2 - d)\nu(\mathcal{F})$

Using KKM theorem



We can divide plane by two intersecting lines depending on $x \in \Delta^3$ into four parts R_x^i , $i \in [4]$. Using this division we can define an open covering A_i of Δ^3 .

Using KKM theorem

Theorem(McGinnis)

If $\bigcup A_i \neq \Delta^3$ then $\tau(\mathcal{F}) \leq 8$

Now fix $x \in \bigcap A_i$ and two lines corresponding to it. Sets of \mathcal{F} not containing the point of intersection of these two lines can be divided into four parts $\mathcal{C}_1, \dots, \mathcal{C}_4$, where sets from \mathcal{C}_i don't intersect R_x^i .

Theorem(McGinnis)

For all $i \in [4]$ $\tau(\mathcal{C}_i) \leq 2$

Our goal

Using our minimal polygon we can make a slight improvement in this construction:

Claim

There is $x \in \bigcap A_i$ such that all sets from \mathcal{F} intersect $R_x^i \cup R_x^{i+1}$ for some i . Moreover, for some $j \in i, i+1$ all pairs of sets from \mathcal{C}_j have a common point in $\overline{R_x^{i+2} \cup R_x^{i+3}}$

Globally, our goal is to show that estimations $\tau(\mathcal{C}_i) \leq 2$ cannot be all sharp at the same time

References

- [1] Daniel McGinnis "A family of convex sets in the plane satisfying the (4,3)-property can be pierced by nine points"<https://arxiv.org/abs/2010.13195>
- [2] D. J. Kleitman, A. Gyarfás, and G. Toth. Convex sets in the plane with three of every four meeting. *Combinatorica*, 21:221–232, 2001.