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The ”Black-Box” Optimization Problem

Consider a common stochastic convex optimization problem:

min
x

[f (x) := Eξ∼D [f (x , ξ)]]

We study the case where we only have access to value f (x) and
nothing else.

Such problem can be classified as a ”black-box”.



Motivation

This class of optimization problem recently has received significant
attention in the setting of reinforcement learning, federated
learning, distributed learning and overparameterized models.

In addition, the ”black-box” problem arises when computation of
gradient is too expensive or not available.



Zero-Order Oracle

We introduce a concept of Zero-Order (gradient-free) Oracle .

Such oracle cannot provide a value of gradient, but it is able to
return function value.

In addition, we study a noisy oracle f̃ :

f̃ = f (x , ξ) + δ

δ is a noise. Two popular concepts of noise:

- determined δ(x) < ∆

- stochastic E
[
δ2
]
≤ ∆2



Gradient Approximation

Convex optimization with gradient computation is well studied.

Idea: approximate gradient with only zero-order oracle calls



Kernel-based Approximation

Approximation was introduced in [1]. It requires f to have
increased smoothness and has the following form:

g(x , e) = d
f̃ (x + hre)− f̃ (x − hre)

2h
K (r)e

- h > 0 - smoothing parameter

- e ∈ Sd
2 (1) - uniformly distributed

- r ∈ [0, 1] - uniformly distributed

- K : [−1, 1] → R - kernel function

Such approximation can be used as gradient oracle, so we can
apply it to known gradient methods.



Strong Growth Condition

Strong Growth Condition:
There exists constants ρ, such that

E∥∇f (x , ξ)∥2 ≤ ρ∥∇f (x)∥2

More general condition of SG:
There exists constants ρ, σ2, such that

E∥∇f (x , ξ)∥2 ≤ ρ∥∇f (x)∥2 + σ2



Biased Gradient Oracle

Biased Gradient Oracle:
A map g : Rd ×D → Rd for a bias b: R → R such that:

g(x , ξ) = ∇f (x , ξ) + b(x)

Bounded bias:
There exists constant δ ≥ 0 such that:

∥b(x)∥ = ∥E [g(x , ξ)]−∇f (x)∥ ≤ δ

Bounded noise:
There exists constants ρ, σ2, such that

E∥g(x , ξ)∥2 ≤ ρ∥∇f (x)∥2 + σ2

Remember generalized SGC?



Accelerated SGD by Nesterov

Update rules of AccSGD algorithm:

xk+1 = yk − ηg(yk , ξk)
yk = αkzk + (1− αk)xk
zk+1 = ζkzk + (1− ζk)yk − γkηg(yk , ξk)

Where

xk , yk , zk - sequences, updated in each iteration

αk , ζk - tunable parameters



Convergence of AccSGD

Theorem 1. ([2])
Let the function f is L-smooth, and the unbiased gradient oracle
g(x , ξ) = ∇f (x , ξ) satisfies SGC, then the accelerated Stochastic
Gradient Descent by Nesterov with chosen parameters:

γk =
ρ−1+

√
ρ−2+4γ2

k−1

2 ; ak+1 = γk
√
ηρ; αk = γkη

γkη+a2k
; η = 1

ρL

has the following rate of convergence:

E [f (Xn)]− f ∗ ≲
ρ2LR2

N2
+

Nσ2

Lρ2



Convergence of AccSGD with biased gradient

Theorem 2. ([4], Theorem 3.1)
Let the function f is L-smooth, and the gradient oracle
g(x , ξ) = ∇f (x , ξ) has bounded bias and noise, then the
accelerated SGD with batching by Nesterov with ρB = max{1, ρ

B }
and chosen parameters:

γk =
ρ−1
B +

√
ρ−2
B +4γ2

k−1

2 ; ak+1 = γk
√
ηρB ; αk = γkη

γkη+a2k
; η = 1

ρBL

has the following rate of convergence:

E [f (Xn)]− f ∗ ≲
ρ2BLR

2

N2
+

Nσ2

LBρ2B
+ δR̃ +

N

L
δ2



Zero-Order Accelerated Stochastic Gradient Descent

Recently was introduced ZO-AccSGD algorithm [4], which is
obtained by using gradient approximation in accelerated by
Nesterov Stochastic Gradient Descent for biased gradient [3].

ZO-AccSGD improves the convergence result (iteration complexity)
of previous state-of-the-art algorithms for our problem formulation.



Plans & Contribution

- Convergence results for ZO-AccSGD were obtained in concept
of stochastic oracle.

We plan to generalize [4] and get convergence results of
ZO-AccSGD in concept of oracle with determined bounded
noise.

- Further work towards research of gradient-free methods.
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